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Kurzfassung

Mit fortschreitender Digitalisierung werden immer mehr Cyber-Physical Systems ein-
gesetzt, womit bestehende physische Systeme ergänzt und verbessert werden können.
Smart Grids sind ein Beispiel für ein Cyber-Physical System. Diese bestehen aus einer
physischen Ebene, die die Produzenten und Verbraucher des Stromnetzes enthält, sowie
einer Cyber-Ebene, die das Netz mithilfe von digitalen Prozessen verbessert. Durch die
Energiewende befinden sich immer mehr kleine und volatile Energieerzeuger in einem
System, wodurch die Komplexität weiter steigt. Diese Situation führt zu einem Bedarf
an leistungsfähigeren und komplexeren Steuerungsmechanismen im Stromnetz. Leider
ist es in heutigen Stromnetzen grundsätzlich nicht möglich, die Herkunft elektrischer
Energie zu messen. Daher bedarf es neuer Ansätze, um Ereignisse im System besser
erklären zu können.

Im Zuge eines Forschungsprojektes haben Aryan et al. [Ary21] einen Knowledge Graph
entwickelt, der ein Cyber-Physical Energy System (CPES) darstellt. Da Knowledge
Graphs in der Lage sind, komplexe und heterogene Daten zu modellieren bringen sie
ideale Voraussetzungen mit, um die Beziehungen und Merkmale eines Smart Grids
darzustellen und Kausalitäten zwischen Ereignissen im System zu finden. Derzeit
wird ein ein regelbasierter Ansatz verwendet, um relevante Kausalitäten in einem
bestehenden System zu finden.

Basierend auf diesem Knowledge Graph wendet diese Masterarbeit Knowledge Graph
Embeddings (KGE) an, um das Potenzial von Machine Learning Ansätzen für die
Prognose von Kausalitäten zwischen Ereignissen in einem Smart Grid zu untersuchen.
Basierend auf Literaturrecherchen wurden vier KGE-Modelle ausgewählt, um diese
zu trainieren - TransE, TransH, ComplEx, TTransE. In einem ersten Schritt wurden
die Modelle allgemein evaluiert, um zu testen wie gut die Modelle den Knowledge
Graph und die Beziehungen zwischen Instanzen im Graph repräsentieren können. In
einem zweiten Schritt wurde jedes der vier Modelle hinsichtlich der Prognose von
Kausalitäten zwischen Ereignissen evaluiert. In einem Evaluation-Workshop wurden
die Modellprognosen weiters manuell analysiert. Dort wurden die Ergebnisse analysiert
und beurteilt, ob diese echte Kausalitätszusammenhänge beinhalten, die im aktuellen
Knowledge Graph (noch) nicht vorhanden sind.

Diese Arbeit kann keine eindeutige Antwort darauf geben, welches KGE-Modell am
besten für die Prognose von Kausalitäten in einem CPES geeignet ist. Sie stellt jedoch
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ein Framework vor, um die Anwendung von KGEs für die Prognose von Kausalitäten
in einem CPES Knowledge Graph zu testen. Darüber hinaus zeigte die Untersuchung
des Einsatzes von KGEs in diesem Use Case, dass der Einsatz von Hybrid-AI Potenzial
zur Verbesserung der Erklärbarkeit in einem Smart Grid bietet.



Abstract

With the emergence of digitalisation to increase the capabilities and efficiency of
systems, Cyber-Physical Systems have emerged at the intersection of physical and
computational systems. Smart grids are an example of such a Cyber-Physical System as
it is comprised of a physical layer containing the producers and consumers of a system
as well as a computational layer, which makes the power grid "smart". An increasing
number of smaller producers in a system due to a transition to more renewable energy
sources sparked the need for a more capable and complex control mechanism of a power
grid. Unfortunately, it is not inherently possible to measure the source of electrical
energy in power grids as they exist today. Therefore, a need for new approaches exists
in order to make power grids more explainable.

In recent research [Ary21], Aryan et al. introduced a Knowledge Graph which can
represent a Cyber-Physical Energy System. As Knowledge Graphs are able to model
complex and heterogeneous data, they seem ideal to represent the relations and features
of a smart grid and to find causalities between events in the system. A rule-based
approach currently aims to find relevant causalities in an existing Knowledge Graph.

Based on this research, this thesis applies Knowledge Graph Embeddings (KGE) on the
Knowledge Graph to investigate the possibilities of using machine learning approaches
for causality link prediction between events in a smart grid. Upon literature research,
four KGE models were chosen to train on the Knowledge Graph - TransE, TransH,
ComplEx, TTransE. In a first step, the model performance was evaluated based on their
ability to represent the Knowledge Graph and the relations between various entities in
the graph. In the second step, each model was evaluated on predicting causality links
between two events in the system. In this process, an evaluation workshop was held
where model predictions were analysed by knowledge experts in order to determine
whether there may be true causality links in the predictions which are not present in
the current Knowledge Graph.

While no certain conclusion can be drawn on which KGE model is best suited for
causality link prediction in a Cyber-Physical Energy System, this thesis provides a
framework to test the application of KGEs for causality link prediction on a Knowledge
Graph representing a smart grid. Additionally, the exploration of using KGEs on
this use case showed that there is potential on the use of hybrid AI for improving
explainability in a smart grid.
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CHAPTER 1
Introduction

1.1 Context and Motivation
Currently, major changes are happening in the energy domain. Due to the emergence
of smarter entities which can communicate with each other, power grids are gaining
new opportunities, which come with challenges. New requirements are arising which
should be addressed by the power grid, its functionalities and management. Especially
the transition to an increased amount of renewable energy sources brings a shift from
few major suppliers offering a constant flow of energy to many small and volatile energy
producers. Smart grids are transforming the power grid to a Cyber-Physical System by
incorporating software components. These smart components help managing energy
systems by using automated processes and computational power. They enable the
system to consider the capabilities of all types of actors in the area and find a solution
to meet the demands of consumers at any point in time.

Cyber-Physical Systems (CPS) have emerged some years ago, and are designed to
support humans in their interaction with machines. In this thesis I refer to the definition
of a CPS as "the integration of computational and physical capabilities which are able
to interact with humans, allowing for better communication and new functionalities"
[BG11]. Cyber Physical Systems are already used in many domains, ranging from
Event Planning over Production Systems to Energy Systems (CPES). In the energy
domain, CPS are used to cope with and use the increased interaction between sensors
and actuators in a system to provide new and better functionalities. CPES are able to
monitor and manage information provided by devices in a power grid, enabling the
communication between two entities [Kar11].

Even though a system may be "smart" by enabling interaction and adaption between
users and devices, this does not yet mean that all events and decisions in a system
are explainable. Especially for unexpected situations and decisions by the system,
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1.1. Context and Motivation

users who interact with a "smart" system want to know the reason behind a system’s
decision. Therefore, a new requirement arises for smart systems: adding explainability
to their capabilities, thus building an Explainable Cyber Physical System (expCPS).
An expCPS should be able to "explain certain aspects of interest about the system,
both in human-comprehensible and machine-processable format" [GLV19].

In the context of Explainable Cyber-Physical Energy Systems (expCPES), increasing
volatility of electrical energy producers poses new and unprecedented challenges to
the electrical power grid. The increase in volatility of energy production is caused by
more renewable energy sources as well as new and more volatile consumers such as
electrical vehicles. The use of CPS in the form of smart grids enables the regulation
of constantly changing demands to ensure the stability of the network (power grid).
Knowing the reasons behind certain decisions made by a system is crucial to increase
trust in the system and to find bottlenecks and error causes within the system.

As an example, if a user notices that their electrical vehicle fails to load at full capacity,
they will want to know why. An explainable Cyber Physical Energy System (expCPES)
should then be able to analyse the causes leading to this behaviour, whether there is
a defect in the loading station, an increased energy demand in the area due to low
temperatures or reduced energy production due to low solar radiation.

To achieve this goal, a system needs to be aware of the connections and implications
between devices as well as their features within the system. One well-suited approach to
model heterogeneous data from many different kinds of devices are Knowledge Graphs
(KG) [AES+21]. There are many definitions of Knowledge Graphs, where some are
quite narrow, while others are very broad. The term was first coined by Google in
2012, describing Knowledge Graphs as follows:

“A graph that understands real-world entities and their relationships to
one another: things, not strings ” [Sin12].

While this is a very vague definition, it has been cited many times, resulting in a
vast amount of possible definitions. To this day, there is not a single definition of a
Knowledge Graph that is universally accepted by the research community. In section
2.1, a deeper analysis of the definition of Knowledge Graphs is conducted. For now, a
Knowledge Graph can be seen as a data storage method, which can connect entities
to each other using relations. Due to the simple, yet flexible structure of Knowledge
Graphs, they are scalable and can deal with very heterogeneous data, as is the case in a
CPES with many different types of devices and connections. As a new development in
the research area of Knowledge Graphs, their applications and capabilities, Knowledge
Graph Embeddings (KGE) emerged as a technique to map entities and relations of
a knowledge graph into a continuous vector space, called embeddings, to capture
their semantic meaning [JPC+22]. As Knowledge Graphs aim to model relations
between real-world entities, they are highly incomplete. By capturing the semantic
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meaning, a KGE should be able to find new connections which potentially exist in the
semantic context, but are missing in an incomplete Knowledge Graph. Additionally,
the representation in a continuous vector space allows for simpler manipulation of
the Knowledge Graph while preserving its inherent structure [WMWG17]. Therefore,
KGEs improve performance of existing tasks and provide new solutions to tasks in the
context of Knowledge Graphs. Some examples of typical use cases for KGEs are link
prediction, knowledge base completion or entity classification.

1.2 Problem Definition
Based on previous work focusing on using Knowledge Graphs for modelling a smart grid
to derive causality information [Ary21], this thesis aims to improve existing causality
predictions by using Knowledge Graph Embeddings. The ExpCPS Knowledge Graph,
which is used as the basis of this thesis, contains the topology of a smart grid as well as
events happening within a certain time period. This KG has been constructed based
on data generated by the BIFROST simulation, a smart grid simulation platform. As
mentioned in [MDE+19], using simulation data for testing and demonstrating new
approaches fosters many benefits. Testing new approaches and solutions in real-time
settings poses unacceptable risks to critical infrastructure and may impact the comfort
of residents. For example if a heating device is wrongly activated in summer due to
bugs in the tested algorithm, residents of the building are faced with an overheated
apartment as well as wasted energy and high costs. Moreover, data access to real-life
data is limited due to privacy laws, increasing the need for simulated scenarios, which
can model the energy consumption of a typical household.

The simulation data for this analysis have been generated by the BIFROST platform.
BIFROST is “a persistent, shared design tool and simulation environment for Smart
Cities, with a strong focus on powergrid infrastructure” [MDE+19]. Supported by the
European Union’s Horizon 2020 research and innovation program, it aims to provide
an integrated tool to simulate energy communities with the option to manipulate and
control scenarios in the system. The tool provides the possibility to design and test
scenarios which would be difficult if not impossible to create on purpose in a real setting.
Depending on the use case, it is possible to build a community featuring any devices
and buildings needed in a scenario. Figure 1.1 shows an electrical vehicle charging use
case inside the BIFROST simulation user interface.

Utilizing the potential of this tool, [ADES21] exports the data produced by a simulation
run of BIFROST to build a Knowledge Graph representing the devices, physical
connections and time-dependent data measurements in the scenario. Predefined events
are then derived from the KG by querying those events based on rules defined in
SPARQL queries. Additionally, causal relations between components in the smart grid
are added to the existing Knowledge Graph by domain experts by defining causality
rules [ADES21].

The resulting Knowledge Graph contains the topology of a simulated village (devices
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1.2. Problem Definition

Figure 1.1: Use case shown in the user interface of the BIFROST simulation environment
as in [AES+20]

in the simulation, including their location, connection-type and other features), the
device measurements for multiple subsequent timestamps as well as annotated events
and general causalities between devices. Until now, a rule-based approach is applied to
derive concrete causalities between events from the Knowledge Graph and its data.

As this method is able to capture many causal connections based on concrete rules,
some connections are potentially missed due to the restricted nature of rule-based
querying. The goal of this thesis is to apply Knowledge Graph Embeddings to this
event-explainability use case. Potentially, new information may be derived from the
data through KGE which may not yet have been captured by a rule-based approach.

The thesis will address two major goals:

G1 Finding a Knowledge Graph Embedding method which works well with the
Knowledge Graph for this use case and

G2 Using promising Knowledge Graph Embedding Methods to find new insights into
the ExpCPS Knowledge Graph.

Based on these goals, the following research questions should be answered in the scope
of the master thesis:

Q1 Which Knowledge Graph Embedding Methods are most suitable for causality
detection in a Cyber Physical System?

4
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Q2 How well do the chosen Knowledge Graph Embedding Methods from Q1 perform
in representing the knowledge base captured by the ExpCPS Knowledge Graph?

Q3 How well can the embedding space be used to uncover causality relations in a
system?

Q1 aims to find a suitable embedding method, considering the features and specific
requirements of the ExpCPS Knowledge Graph. Answering this question requires
thorough literature research to find promising embedding methods which fit the
requirements of the use case. Additionally, the requirements, advantages and drawbacks
of each embedding method need to be evaluated. Considering the task of causality
prediction in a simulated smart grid, the most fitting embedding methods for this use
case will be decided upon.

In Q2, the best suited models based on literature research (Q1) will be implemented
and trained on the training data. By checking Hits@10 and mean rank, the model
which represents the Knowledge Graph most accurately will be determined. The
models will not only be analysed by comparing the performance metrics overall, but
also a detailed analysis of strengths and weaknesses of each model concerning different
areas of the Knowledge Graph will be conducted. Even though the main goal of the
thesis is causality prediction, checking whether the main semantics are captured by a
model allows for a better understanding of the performance of the model and whether
overfitting on certain relations might be an issue.

The final Research Question Q3 focusses solely on causality relations. While the general
performance of KGE methods was analysed in Q1 and their overall performance on the
ExpCPS Knowledge Graph by [ADES21] was evaluated in Q2, this research question
aims to analyse the performance specifically focussed on causality relations between
events. Furthermore, new relations which have not been captured by the original
Knowledge Graph will be analysed whether they are plausible causes, which should
be added to the KG. If so, the chosen KGE can assist in the task of knowledge base
completion for a CPES by suggesting missing facts and relations in the data.

1.3 Simulation Scenario and Data Structure
This section aims to explain the simulation scenario used in this thesis. The section
will focus on the data source and the data processing pipeline, which precedes the
experiment. Understanding the data and its intricacies is crucial for choosing the right
tools and methods for its analysis. As already mentioned, the data in the ExpCPS
Knowledge Graph is sourced from a simulation platform for a smart power grid. In the
first part of this section, the data pipeline to build the Knowledge Graph is discussed in
detail. The second part will then focus on the Knowledge Graph itself and its structure.
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1.3. Simulation Scenario and Data Structure

1.3.1 Data Pipeline
The Knowledge Graph containing a smart grid and its causal relations as it is used
in this thesis was created using multiple data sources and computational layers to
manipulate the data. The simulation platform, which the ExpCPS Knowledge Graph is
based on is called BIFROST [MDE+19]. In this framework, a user can build an energy
village and connect multiple components, such as residential houses, transformers,
electric vehicle (EV) charging stations, etc. with each other using underground cables.

The physical setup and the connections between two devices in the village is represented
in its topology. It forms the basis of the ExpCPS Knowledge Graph by providing
the structural setup of a village. In the next step, the simulation is run for a certain
amount of time (24h in this thesis) to obtain measurements over time. Additionally, the
granularity of time steps can be configured (1h timestep in this thesis). The simulation
run is producing a list of system states, which indicate measurements of sensors for
each time step in the simulation. These measurements are stored as observations in
the ExpCPS Knowledge Graph.

Using the observations, an Event Annotator is defined to derive specific events from
the observations which have been measured during the simulation. Based on some
predefined rules, events are labelled by analysing the data of observations over time. As
an example, an OverloadingEvent is registered if a loading observation at a transformer
has a particularly high value.

For the creation of the ExpCPS Knowledge Graph, the causal relationships between
sensors and events are still missing. The concept of causality will be explained in more
detail in section 2.3.1, but for now there are three different layers of causality:

Layer 1. generally known causality between two types of objects. As an example, a general
causality is that an increase in energy production in a solar panel can cause an
increase in available electricity in a transformer.

Layer 2. potential causality between two concrete objects, derived from general causality.
For example, there is a solarPanelA located at a specific location in a smart grid
setup and a TransformerC, which is physically connected to solarPanelA.
Using the information about generally known causality, we can derive a potential
cause between these two objects. So, solarPanelA potentially causes changes
at TransformerC.

Layer 3. concrete causality between two events. Based on information about potential
causality between two objects, a concrete causal relationship between two events
happening at two objects at the same time or in close proximity can be de-
rived. As an example, a sensor at TransformerC registers OverloadEventX
at timestamp t. Additionally, an IncreasedProductionEventY is reg-
istered at solarPanelA. As we know there is a potential causality between
TransformerC and solarPanelA, a causality between OverloadEventX at
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1.3. Simulation Scenario and Data Structure

Figure 1.2: Schematic overview of ExpCPS Knowledge Graph entities and relations

TransformerC and IncreasedProductionEventY at solarPanelA can
be derived.

Based on this knowledge, generally known causality rules (layer 1) from domain experts
were used to derive potentialCause relations between specific sensors in the system (layer
2). In the final step, this information was used to find concrete causality explanations
between events in the simulation (layer 3). When looking for an explanation of EventA,
the idea is to check the sensor which measured the events, such as SensorK and to
find sensors, which are connected to SensorK through a potentialCause - relation.
For each sensor, which could be a potentialCause of SensorK, the algorithm is
looking for an EventX happening at the sensor at the same time or in close temporal
proximity to EventA. If such an event exists, a causedBy relation is created between
EventA and EventX. For ranking a growing number of potential causes, a reliability
measure of the Event Annotator is used. This measure can be interpreted as the
uncertainty of the connection between the causal event and the effect event.

1.3.2 Knowledge Graph Structure
Based on the data pipeline above, a Knowledge Graph containing all information
necessary to derive causalities is created. For better structure in the storage of the
Knowledge Graph, each part of the Knowledge Graph is stored in smaller sub-graphs
based on the topic of the data and the stage of the pipeline where it was created.
In figure 1.2, a schematic overview of the sub-graphs and their elements is shown.
Moreover, each sub-graph in ExpCPS Knowledge Graph is described here:

Topology In this graph, the physical structure of the energy village is stored. Any
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physical component in the power grid is called FeatureofInterest. This
can be an electric vehicle charging station, a solar panel, an underground cable
or a weather station. Any connection between two components of the power
grid is stored as a hasConnection relation. Additionally, sensors are placed
at features of interest, which can measure various things, such as voltage, cable
length or capacity of a component. Sensor measurements can be static in time,
such as cable length, or dynamic, such as voltage or power.

Time The time graph contains all the observations, which are made by a sensor in the
topology. Each observation contains information about the sensor which made
the observation and the feature of interest it is connected to. Each observation
has a timestamp of when the observation was registered. In case an observation
is time-invariant, the start of the simulation is set as the respective timestamp.
Finally, the data which was measured is stored in an observedData entity.
This could be a value of the cable length, the voltage of a specific transformer at
a specific time or a GPS location of a feature of interest.

Inferred Based on expert knowledge about the potential causes between two ob-
jects(layer 1), the connections between two sensors in the energy villages are
inferred based on SPARQL queries (layer 2). Additional information about
using SPARQL queries for causality annotations in the ExpCPS Knowledge
Graph are described in detail in [ADES21]. Important to note here is that this
potentialCause is not a causality between two events. This relation only
shows a potential causal relation between two sensors, which is connected to a
specific object in the energy village, but it is not connected to any observation or
event. The potentialCause relation is a way to represent common knowledge
about directions of a causal relation. For example, generally low solar intensity
regisered by WeatherStationA causes low power production in SolarPanelH
and not the other way around.

Event The event sub-graph is created by an event annotator. It uses data from
observations to find specific types of events, such as an overload in a transformer
or a peak demand in a residential building.

Explanation This sub-graph is the most crucial part of the Knowledge Graph for
this thesis as this is where the ground truth is stored on which potential causal
relations will be evaluated. Based on annotated events, their associated sensors
and the potentialCause relation, causalities between two events are derived.
The aim of this thesis is to train a good embedding model to be able to predict
these causeEvents and to find potential new events which could have caused
a specific event.

In figure 1.2, the sub-graphs are color-coded and the entities and relations in each
sub-graph are represented in the schema. Therefore, this schematic overview can serve
as assistance for the reader.
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1.4 Structure of the Work
To answer the research questions posed, the thesis will start by introducing the concepts
needed to understand the tools and methods used in the thesis and analysing related
work in the field in chapter 2. This chapter aims to explain the concepts of Knowledge
Graphs, Knowledge Graph Embeddings and Event Explainability. The reader will
be introduced to the ideas behind the keywords, but also recent advances in research
will be discussed. At the end of this chapter, the research questions should not only
be understood at a superficial level, but also the concepts involved will be covered
to allow the reader to comprehend the research questions which should be answered
in the course of this thesis. This chapter will be the basis for any future design and
methodology decisions of this work.

In chapter 3, the goal is to discuss and explain the methodology as a basis of the
empirical analysis conducted in the thesis. Two main topics will be discussed: possible
Knowledge Graph Embedding methods which can be applied as well as architecture
choices of the experiment design. In the first section, an in-depth analysis of currently
available methods, their designs, assumptions as well as benefits and drawbacks of each
method will be conducted. The second topic focusses on the experiment architecture.
As the ExpCPS Knowledge Graph seems to be complete in itself, an adapted version of
the experiment architecture will be constructed and used to evaluate the performance
of an embedding model on the ExpCPS Graph.

Following the explanation of the methodology, chapter 4 continues by explaining the
experimental setup. This includes an in-depth analysis of the data structure, necessary
preprocessing work for the thesis, libraries and frameworks used for all steps and a
schematic overview of the pipeline to produce the final results. Finally, the evaluation
metrics used to analyse the performance results will be discussed and explained.

Chapter 5 will show the results obtained by running the experiment as it was described
in chapter 4. There are three main types of performance results to show:

• performance metrics of various KGE models as chosen in section 3.1

• a detailed performance analysis of the trained embedding models considering
performance on different subgraphs of the data.

• quantitative and qualitative analysis of link prediction results obtained by applying
the embedding models for predicting causality relations.

In the final chapter 6, the results will be discussed and analysed. By recapping the
research questions, checking their answers and providing possible conclusions from the
experiment results, all relevant findings and answers provided by this thesis will be
summarised. Moreover, limitations and future work will be discussed as well as the
contributions this thesis has made to the research domain.
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CHAPTER 2
Background and Related Work

Based on a Knowledge Graph as the primary source of information containing details
about the entities, properties and connections in a simulated smart energy system,
the goal in this thesis is to use a prediction model to improve existing knowledge in
the graph. Since this task requires a combination of semantic understanding of the
knowledge represented in a knowledge graph as well as the ability to integrate a lot of
data using a flexible and adaptive approach, Knowledge Graph Completion methods are
mostly staged between symbolic and sub-symbolic AI. While there has been a contest
between these two methods, Knowledge Graph completion tasks show that there are
benefits to both approaches and best results can be achieved by integrating them.
The most commonly used and powerful method for Knowledge Graph Completion is
Knowledge Graph Embeddings [IK20]. They aim to create a representation of the KG
in a low-dimensional vector space, reducing the complexity of the graph to gain new
insights. While a lot of research has been conducted in this field, no application of KGE
for complex relations, such as causalities in a network, could be found in the literature.
Especially in the area of event explainability in the energy domain, this thesis aims
to test the performance of KGEs as a combination of symbolic and sub-symbolic AI
approaches for improving the known causal relations in the graph. In the following
sections, the main research topics connected to the thesis will be elaborated. Current
research and trends are discussed and their relevance to the thesis will be analysed.
The three main topics to be investigated are Knowledge Graphs, Knowledge Graph
Embeddings and Event Explainability.

In the first section, the concept of Knowledge Graphs will be discussed in more detail.
As there is no universal definition of a Knowledge Graph, there will be a discussion of
the most relevant features defining a Knowledge Graph. Additionally, ideas, origins and
applications as well as current trends and promising ideas for the future application of
Knowledge Graphs will be addressed.
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In section 2.2, Knowledge Graph Embeddings as a tool to improve Knowledge Graphs
will be investigated. Knowledge Graph Embeddings can be used as a means to apply
Machine Learning concepts to Knowledge Graphs, opening new opportunities for
advanced solutions for various tasks, such as link prediction, entitiy classification
or clustering. As the application of Knowledge Graph Embeddings on the ExpCPS
Knowledge Graph forms the core of the thesis, various methods, their advantages and
drawbacks as well as assumptions on which they are based will be discussed.

Finally, section 2.3 will focus on Event Explainability. As the goal of the thesis is to
apply KGE methods for causality link prediction, this section aims to analyse methods
explored in research to achieve explainability of an event in a system. The methods
should not be restricted to semantic technologies, but the aim is to give a broad
overview of possibilities for event explainability and their application domains.

2.1 Knowledge Graphs
As the data used in this thesis consists of a Knowledge Graph representing a Cyber-
Physical Energy System, this section will focus on the definition of a Knowledge Graph,
its applications and how to build it. As mentioned in [FSA+20], Knowledge Graphs
have experienced a huge trend since their introduction by Google, yet there is not a
single, precise definition of a Knowledge Graph to date.

2.1.1 Definition
The original definition of a Knowledge Graph by Google was "A graph that understands
real-world entities and their relationships to one another" [Sin12]. However, this
definition does not give a proper explanation of what a knowledge graph is supposed to
be. Therefore, the term has been used for many types of graphs and data representations
as the concept became more popular. In an extensive survey of potential definitions
for the term "Knowledge Graph", [EW16] has identified two main issues connected to
the ambiguous usage of the term. First, Google’s initial definition in a blog entry is
commonly cited as a definition even though it does not provide a good explanation
of what constitutes a Knowledge Graph, resulting in very different interpretations
of the term. Second, there is no clear differentiation between the terms knowledge
base, knowledge graph and ontology as they are sometimes just used as synonyms for
each other [EW16]. Some definitions of a Knowledge Graph could equally be used to
describe an ontology, which makes it hard to differentiate the two terms.

By analysing the differences between the three terms Knowledge Graph, Knowledge
Base and ontology, [EW16] has suggested a new definition of Knowledge Graphs:

"A knowledge graph acquires and integrates information into an ontology
and applies a reasoner to derive new knowledge."

11
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Figure 2.1: Architecture of a Knowledge Graph, adapted from [EW16]

In this definition, a Knowledge Base is a simple collection of knowledge independent
of where the knowledge is coming from and how it was collected. An Ontology is
a possible representation schema of a Knowledge Base, while a Knowledge Graph
contains the acquisition and integration of data into an ontology, the ontology itself
as well as the use of a reasoner to derive new knowledge. An ontology is further
defined as a formally represented conceptualization of a domain. As ontologies allow
for semantic modeling of any knowledge, they are often used as Knowledge Bases,
especially for knowledge-based systems. The definition is visualised in figure 2.1. The
schema shows the differences between the three terms mentioned above, where an
ontology is a concrete implementation of a Knowledge Base. If a Reasoning Engine
is applied to extend a Knowledge Base, it is called a knowledge-based system. Only
when the integration and acquisition of data is included as well, the concept is called a
Knowledge Graph.

The ExpCPS Knowledge Graph, which is the data source in this thesis, contains all
three aspects of a KG as defined by [EW16]. An ontology was defined as an initial
structure, containing the features and definitions of the data points. Using a data
processing pipeline, data from the BIFROST simulation was integrated and could be
used for data acquisition in the Knowledge Graph. Finally, a reasoning engine was
applied to extend the Knowledge Base with all the missing information derived from
the definition of the ontology.

On a final note, the definition quoted in this section, even though considering various
important aspects of a Knowledge Graph, is only one of many possible definitions.
This definition was chosen as it considers various sources of definitions and based on
a meta analysis, it aimed to include the most important aspects of each individual
definition. There is just not one commonly accepted definition of a Knowledge Graph.
Many other researchers have tried to find a definition, but do not always agree with
each other, resulting in a vast amount of proposed definitions. Additionally, the idea
of graph-based knowledge representation has been around for decades and is not a
completely new invention by Google. However, the introduction by Google has started
a new golden era for this concept and sparked new research in the domain.
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2.1.2 Implementation
In this section, terms commonly used for working with Knowledge Graphs will be ex-
plained. Additionally, the most commonly used method to build and store a Knowledge
Graph, using RDF triples, will be explained.

Even though Knowledge Graphs are not restricted to any type of implementation, RDF
(Resource Description Framework) triples are primarily used to represent data in a
Knowledge Graph based on a consensus in the semantic web community. [WHCMS18].
In [FEM+18], a Knowledge Graph is even defined as an RDF Graph, making the
use of RDF triples the main discriminative feature of a Knowledge Graph in their
definition (even though this definition seems very restrictive and does not capture
many important aspects of a KG). An RDF graph is a directed graph, which is built
by using RDF triples, also called statements or facts. An RDF triple is an ordered
set of three terms - head, relation and tail. An example of an RDF triple could be
(Vienna, locatedIn, Austria), where Vienna is the head, locatedIn is the
relation and Austria is the tail of the triple. Each RDF term can have one of three
different forms. It is either a IRI - Internationalized Resource Identifier (allowed for
head, relation or tail), a blank node (allowed for head and tail) or a literal (allowed for
tail). RDF triples are used to create a labelled directed relationship (relation) between
two entities (head and tail). The terms head, relation, tail can be used interchangeably
with the terms subject, predicate, object respectively, which can be observed in many
research papers. By using a set of multiple triples, a graph is created [WHCMS18].
A collection of triples can be stored in a named graph, offering data managers the
possibility to create multiple sets of triples. An RDF dataset can consist of multiple
named graphs.

For querying data in an RDF graph, SPARQL is recommended by the W3C as the
standard querying language. In a SPARQL query, a certain graph pattern is specified
which is then matched against the RDF graph to be queried [WHCMS18]. It has some
similarities with the query-language SQL for relational databases, which is where the
name is derived from.

2.2 Knowledge Graph Embeddings
As discussed in the section above, Knowledge Graphs have gained a lot of attention in
recent years as they are very effective in representing structured data. However, the
inherent structure of Knowledge Graphs and their representation in triples makes it
difficult to analyse the knowledge systematically as well as to manipulate the graph.
Therefore, Knowledge Graph Embeddings have emerged as a new research field. The
main idea of KGEs is to embed the components of a KG into a continuous vector space.
This facilitates the manipulation of a KG, while its original structure stays untouched.
Using these embeddings, various tasks can be tackled, such as KG completion, relation
extraction or entity classification [WMWG17].
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Knowledge Graphs tend to be incomplete, which means that there are connections
between entities which are not present in the Knowledge Graph. The task of identifying
these missing connections is called Knowledge Graph Completion. The goal of Knowl-
edge Graph Completion, also called Link Prediction, is to find new relations in an
existing Knowledge Graph, which are not present in the original graph but depict true
facts. This task is especially interesting as the aim of the thesis is to find new causality
links between events for the ExpCPS use case. Even without using Knowledge Graph
Embeddings, new links can be derived from a Knowledge Graph by using defined rules
and constraints in a reasoning engine (as mentioned in section 2.1). For example, if
a Knowledge Graph contains the triple (Vienna, capitalOf, Austria), based
on defined rules, we can additionally derive new triples. Considering that any capital
needs to be a city and every capital is located inside the country it is the capital of, we
can add the following triples to our Knowledge Graph: (Vienna, type, city) and
(Vienna, locatedIn, Austria).

Unfortunately, these rules need to be defined in advance, usually by imposing constraints
and rules in the underlying ontology. Considering the size of some Knowledge Graphs,
this process may be labour-intensive or just infeasible. Additionally, some connections
are unknown beforehand or are not clear enough to be defined by rules. Big Knowledge
Graphs have a lot of information stored, but lack a coherent set of rules to derive
new knowledge. Therefore, Knowledge Graph Embeddings have been developed to
target this issue, as they aim to derive similarities in entities and relations which
are not directly derived from rules and constraints. This means that new relations
can be predicted even without having to define rules in advance. Thus, Knowledge
Graph Embeddings open a whole new possibility of analysing or extending an existing
Knowledge Graph. [BRC+20]

In the next paragraphs, the general setup of a Knowledge Graph Embedding will
be explained before explaining in more detail the separate components needed for a
KGE. Moreover, the most common embedding methods are discussed, describing their
approach as well as pros and cons of each method.

2.2.1 General Implementation
The main idea of Knowledge Graph Embeddings is to create a representation of a specific
Knowledge Graph in one or more low-dimensional vector spaces. This means that for
each entity and each relation a vector is created based on their connections to other
entities and their types of relations. Therefore, similar entities should be represented
as similar vectors within the vector space. For analysis, the entities/relations can be
compared by using vector similarity measures. [BRC+20].

There are three main components which compose the core of any Knowledge Graph
Embedding. In Figure 2.2, these core layers are shown in the center. They are
called the Lookup Layer, Scoring Layer and Loss Function. In addition to these
three core components, for each KGE, an optimizer needs to be defined and negative
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Figure 2.2: Schematic overview of a generic Knowledge Graph Embedding, adapted
from [CPMJ20]

triples need to be generated for training. The choice of all these components is what
defines the performance differences between various embedding methods. Based on
this general architecture, a Knowledge Graph Embedding is trained like a gradient
learning algorithm: by passing the training set through the algorithm multiple times
for incremental performance increases in each epoch. The result of a trained Knowledge
Graph Embedding is a vector representation of each entity and relation in the Knowledge
Graph. This representation can then be further used to complete downstream tasks
on the Knowledge Graph, such as Link Prediction, Entity Classification or Question
Answering, as shown in figure 2.2.

In the following sections, each part of the KGE architecture (Lookup Layer, Scoring
Layer, Generation of Negative Triples, Loss Function, Optimizer) will be explained
in more detail and possible choices for each component are presented. Even though
papers on different KGE methods mostly focus only on the Scoring Layer, the choice of
the other components is equally important. A lack of transparency considering all the
components of the KGE architecture has caused the emergence of many embedding
methods claiming their performance is better than the performance of traditional
methods, while they just used a different framework around their scoring function
which caused the actual performance increase. Possible differences in the overall
experiment architecture not attributed to the scoring layer may be different optimizers
or loss functions. This lack of comparability results in a need for benchmark tests on the
performance of new embedding methods. A new method can only be truly compared
to existing methods when testing the two methods under the same overall framework
ceteri paribus. Recently, several papers have tried to offer a unified framework to
compare existing and new embedding methods [HZMT21]. In addition, some papers
have conducted a meta-analysis, trying to compare embedding methods using the
exact same setup and data for all methods [DWXG20]. These analyses show that the
performance differences change quite a lot when controlling for outside factors and
comparing performances even shows reverse effects in the new setups.

Additionally, I want to mention that due to the high research interest in Knowledge
Graph Embeddings and the vast amount of possible embedding methods, it is not
possible to explain or mention all available Embedding Methods in this section. Hence,
I will focus on the most relevant ones to the research domain and most cited methods.

15



2.2. Knowledge Graph Embeddings

Variable Explanation
E the set of entities present in the Knowledge Graph
R the set of relations present in the Knowledge Graph
(h,r,t) a triple representing a fact of the form (head, relation,

tail), where {(h, r, t)|h, t œ E, r œ R}
S the set of triples in the Knowledge Graph
SÕ a set of corrupted triples, see formula 2.12
h, r, t embedding vectors corresponding to the entities and relation

of (h,r,t)
L A loss function as defined in an embedding method
f(h, r, t) A scoring function as defined in an embedding method
M a numerical matrix
a the complex conjugate of a
Re(x) the real part of a complex value x
||a||¸1 Manhattan length of the vector a, defined as

L¸1 = |a1| + ... + |an|
||a||¸2 Euclidean length of vector a, defined as

L¸2 =
Ò

a2
1 + ... + a2

n

n number of distinct entities in a KG
m number of distinct relations in a KG
o number of distinct timestamps in a KG
d dimension size of an embedding space
k dimension size of a relational embedding space, if relevant
hÕ, tÕ corrupted head/tail

Table 2.1: Variable notations and explanations for Knowledge Graph Embedding
definitions

For further information, an extensive list of possible embedding methods sorted by
traditions, information types, augmentations and emergents, including the respective
papers and, if available, code of each method is available here1 .

For better understanding, table 2.1 shows a list of variables and their explanations
used in the following section for the discussion of KGE methods and their components.

2.2.2 Lookup Layer
The first layer of the Knowledge Graph Embedding is the Lookup Layer. This layer is
simply assigning an embedding vector to each entity and relation in the Knowledge
Graph. As the name suggests, for each triple, the entities and relation are looked up
in the embedding space and for new entries, new embedding vectors are created. For

1https://github.com/xinguoxia/KGE
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initialization of embedding vectors, there are multiple possibilities, such as uniform,
normalized, or Xavier initialization. While it seems unimportant what kind of initializa-
tion is chosen as weights are updated and overwritten again and again over the whole
training process, bad initialization can have an impact on the performance of the whole
model. For example, if initializing each weight with zero, or the same random number
for each weight, it is hard to learn big differences between variables as the update
magnitude tends to be similar for each variable. Also, if initial weights are either too
small or too large, this may have an impact on the learning process. Therefore, random
initialization based on a distribution function such as uniform or normal distribution is
commonly used. Xavier initialization aims to find a good variance of weights without
explicitly defining any type of distribution [GB10, Tri19].

2.2.3 Scoring Layer
The scoring layer consists of a scoring function, which assigns a score to each triple in
a Knowledge Graph. The goal is to produce a high score for true triples (meaning a
triple exists in a Knowledge Graph). For negative triples or wrong facts, a low score
should be produced. The scoring function is the core of each embedding method and
therefore a lot of different methods have been produced in research. Most traditional
embedding methods use structure-based approaches. This means that they focus on
the triples present in a Knowledge Graph without considering other information which
might be available, such as temporal dynamics or semantic meanings of the entities.
As triples are sometimes called facts in literature, these models are also called fact
alone methods [BRC+20]. The two most widely used types of structure-based methods
are translational models and semantic matching models. Recently, Neural Networks for
Knowledge Graph Embeddings have emerged, introducing deeper networks to improve
the embedding process.

As opposed to embedding methods focusing only on triples present in the Knowledge
Graph, there are methods which are aiming to leverage additional information to build
a good representation of a Knowledge Graph, such as temporal information, entity
types or textual descriptions. These methods are called enhanced KGEs. Temporal
Knowledge Graph Embeddings are the most relevant enhanced KGEs for this thesis.
Consequently, there will be a detailed explanation of this type of enhanced embedding
while other possible enhancements will only be discussed briefly.

There are multiple papers conducting a meta-analysis of currently available Knowl-
edge Graph Embedding Models, their implications, assumptions and performances.
[WWMK20], [BRC+20] and [DWXG20] form the basis of the following discussion about
different embedding methods.

Translational Models

Translational Distance Models are using distance-based scoring functions to build a
Knowledge Graph Embedding. Based on an input triple (head, relation, tail),
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(a) TransE (b) TransH

(c) TransR

Figure 2.3: Simple Examples of Translational Knowledge Graph Embeddings
[WWMK20]

they are learning the translation from the head to the tail, carried out by the relation
of the triple. The intuition behind this translation is to connect head and tail through
the relation with low error, i.e. h + r ¥ t if the triple (h,r,t) exists in a Knowledge
Graph. Figure 2.3a shows an example of a very simple translation based on the triple
(h,r,t) as defined in the TransE model.

TransE [BUGD+13] is the most representative translational distance model and has
been one of the earliest KGE models in general. Its main contribution was the
simplicity and efficiency of the embedding, which made it one of the first scalable
embeddings, applicable even for big Knowledge Graphs. The authors of TransE
use a common k-dimensional vector space to represent entities and relations.
The idea is to use the relation as a translation from the head to the tail, as
shown in figure 2.3a. As depicted, a common vector space is used in the TransE
model to represent entities and relations. As a scoring function f(h + r, t) is
proposed, where f is either the L1-norm(¸1, Manhattan Distance) or L2-norm
(¸2, Euclidean Distance) between h + r and t (in practice, the euclidean distance
is used most of the time):
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f(h, r, t)T ransE = ||h + r ≠ t||¸1/¸2 (2.1)

TransE shows a very simple yet efficient representation of KG facts in a low-
dimensional vector space. However, there are some limitations to the TransE
embedding, especially when dealing with 1-N, N-1 or N-N relations (for defi-
nition of 1-N relations, see section 2.2.3). This comes from the definition of
the scoring function and the shared vector space for entities and relations. As
an example, let’s assume the triples (Neubau, locatedIn, Vienna) and
(Neubau,locatedIn,Austria) are present in a Knowledge Graph. Since
the scoring function aims to accomplish h + r ¥ t, the elements Vienna and
Austria would be represented by the same vector according to the scoring defi-
nition. However, there is obviously a differences between these entities. Vienna
is a city and Austria is a country. They only have some common relations, but
this does not make them the same entity.
Therefore, novel extensions of the TransE model have been developed to address
these flaws, such as TransH [WZFC14b] and TransR [LLS+15]. Both models
follow a similar general idea, as they allow entities to have different representations
based on different types of relations. While Vienna and Austria may be similar
based on the locatedIn relation, they may be very different for another type
of relation, such as numberOfInhabitants.

TransH [WZFC14b] introduces relation-specific hyperplanes to create different repre-
sentations of entities based on the type of relation. Each relation r is represented
as a vector on a relation-specific hyperplane r with the normal vector of the
hyperplane being wr. Therefore, the head and tail entities of a triple need to be
projected onto the relation’s hyperplane depending on the type of the relation to
get their projections h‹ and t‹. Assuming a triple of the form (h,r,t), the
projections are calculated as follows:

h‹r = h ≠ w€
r hwr , t‹r = t ≠ w€

r twr (2.2)

These projections are then fed into the scoring function, calculating the squared
euclidean distance:

f(h, r, t)T ransH = ||(h≠w€
r hwr)+r≠(t≠w€

r twr)||22 = ||h‹r +r≠t‹r||22 (2.3)

With the use of relation-specific projections on hyperplanes, entities can have
different roles for different relation types in the TransH model. Figure 2.3b
visually shows the projection of head and tail entities onto a relation-specific
hyperplane as defined in the TransH model.
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TransR [LLS+15] While sharing the general idea of relation-specific embeddings,
TransR uses relation-specific spaces rather than hyperplanes. For each type of
relation, a projection matrix Mr is defined to project entities from the entity
space to a relation-specific vector space:

hr = hMr , tr = tMr (2.4)

The scoring function is then equal to the scoring function of TransH, considering
the projected entities:

f(h, r, t)T ransR = ≠||hMr + r ≠ tMr||22 = ≠||hr + r ≠ tr||22 (2.5)

The projection of entities to the relation space as defined in TransR is shown
in figure 2.3c. The introduction of a projection matrix for each type of relation
increases the number of parameters which need to be learned. Therefore, model
performance becomes more complex and less efficient. In later approaches, the
complexity of TransR is reduced to increase computational efficiency. In TransD,
the projection matrices are decomposed into a product of two vectors to reduce
model complexity from O(nd + mdk) in TransR to O(nd + mk) in TransD.
However, all methods mentioned above have one big issue in common: None
of them takes into account the heterogeneity of relations, as some relations
may form a lot of connections between entities while others do not. This can
cause overfitting on very general, simple relations and underfitting on more
specific or complex relations [DWXG20]. The TranSparse model aims to use
sparse projection matrices to reduce complexity and account for the number of
occurrences of a relation to reduce overfitting of common relations.

KG2E [HLJZ15] and TransG [XHHZ17] aim to incorporate uncertainties of relations
in the model training process. They both use Gaussian distributions to effectively
model uncertainties of entities and relations in a Knowledge Graph [WMWG17].
While KG2E merely focusses on the uncertainty of relations, TransG also con-
siders multiple semantic meanings of a relation by using a mixture of Gaussian
distributions. This leads to the result that TransG outperforms most models in
the benchmark Knowledge Graphs for link prediction [DWXG20].
There are many more translational approaches for KGEs which perform better
than the presented approaches in specific tasks. However, these approaches are
also becoming increasingly complex, which requires high computational resources
to apply them to bigger Knowledge Graphs.

Semantic Matching Models

Semantic Matching Models are leveraging latent semantics present in the vector
embeddings of entities and relations to measure the plausibility of triples. Compared
to the distance-based scoring of translational models, semantic matching models apply
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(a) RESCAL

(b) DistMult (c) HolE

Figure 2.4: Examples of Semantic Matching KGEs, sourced from [WWMK20]

similarity-based scoring functions. In general, semantic matching models, also called
bilinear models, achieve good results in link prediction tasks according to [KP18].

RESCAL [NTK11] was one of the earliest embedding models, developed in 2011. It
uses a full-rank matrix for each relationship. Interaction between elements is
modelled by matrix-vector products. The use of a full-rank matrix allows for
high expressive power. The scoring function of RESCAL is defined as follows:

f(h, r, t)RESCAL = h€Mrt =
d≠1ÿ
i=0

d≠1ÿ
j=0

[Mr]ij · [h]i · [t]j (2.6)

Mp is the matrix associated with the relation of the triple. Each type of relation
has their own interaction matrix, which should represent the interaction between
two entities through this relation. Figure 2.4a shows the interaction of h and t
through relation r in the RESCAL scoring function. In this function, pairwise
interaction between all components of the head and tail entities is captured
through the relation matrix. Due to the high expressivity, RESCAL is prone to
overfitting, offering a big opportunity for new approaches trying to address this
issue and improve prediction performance [WWMK20].
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DistMult [YYH+15] introduced a simplified version of RESCAL by restricting the
interaction matrix Mr to diagonal matrices. Instead of a full-rank matrix, a
vector embedding r is defined for each relation and the interaction matrix is
defined as the diagonal matrix of vector r. The scoring function of DistMult is
thus defined as:

f(h, r, t)DistMult = h€diag(r)t =
d≠1ÿ
i=0

[r]i · [h]i · [t]i (2.7)

In this scoring function, pairwise interactions are only captured between compo-
nents of the two entities along the same dimension, as shown in figure 2.4b. The
massive reduction in complexity causes the model to only be able to represent
symmetric relations, which is a big limitation in its capabilities. [WWMK20]
However, the reduction in complexity also reduces requirements in computational
efforts and memory. Unfortunately, application on large-scale Knowledge Graphs
with different types of relations of the DistMult model typically is not very
performant.

HolE [NRP16] introduces a circular operation between head and tail to capture
interactions not only in the same dimension, but also compositional interactions
over multiple dimensions. Therefore, interactions caused by multiple dimensions
of a relation can be captured, which makes it possible to model complex relations
between entities. Figure 2.4c shows the increased number of captured interactions,
while only using a single vector r for the transformation. The circular correlation
operation is denoted as ı and is defined using the fast Fourier transformation
F(·) [DWXG20]:

h ı t = F≠1(F(h) § F(h)) (2.8)

Using this transformation, the scoring function of HolE is defined as:

f(h, r, t)HolE = r€(h ı t) (2.9)

As this circular correlation operation is not commutative, HolE is able to model
non-symmetric relations, adding an important capacity to bilinear models.

ComplEx [TWR+16] aims to extend the DistMult model by embedding the entities
and relations in a complex vector space. This means that the vectors h,r,t are
not restricted to the real space, but can also lie in the complex space. This
introduces the possibility to model asymmetric relations, similar to HolE. In fact,
[HS17] proved that ComplEx and HolE are isomorphic. This means that any
ComplEx model has an equivalent HolE model. The scoring function for the
ComplEx model is defined as:
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f(h, r, t)ComplEx = Re
1
h€diag(r)t

2
= Re

A
d≠1ÿ
i=0

[r]i · [h]i · [t]i
B

(2.10)

where t is the conjugate of t and Re(x) is the real part of the complex value of x.
Extending the vectors of entities and relations to the complex space allows for
different scores of a triple depending on the order of the entities, which is the
definition of an antisymmetric relation.

Neural Network Models

As deep learning has become a popular and extensively used research topic in many
applications, neural network-based Knowledge Graph Embeddings have been proposed
as well. They show promising performances for link prediction and seem to be very
effective in finding good embeddings for a Knowledge Graph. However, they suffer from
low explainability due to the black-box nature of neural networks. Additionally, a huge
number of parameters needs to be trained due to multiple layers in the architecture.
This results in high computational complexity, which further results in poor scalability
of the models [DWXG20]. Proposed methods are Semantic Matching Energy (SME)
[BGWB14], Neural Tensor Networks (NTN) [SCMN13] and ConvKB [NNNP18],
introducing convolutional layers to Knowledge Graph Embeddings.

Enhanced Embedding Methods

As mentioned before, new embedding approaches aim to use not only triples present in
a Knowledge Graph, but also try to leverage additional information. The following list
aims to give an overview of possible information which can be exploited to improve
embedding performance. Since most of the additional information is irrelevant or not
available for the Knowledge Graph used in this thesis, these possibilities will only be
discussed briefly, while relevant embedding enhancements (temporal embeddings) will
be addressed in more detail.

Textual Description For many Knowledge Graphs, there is additional text infor-
mation about entities and relations available. Some embedding approaches try
to leverage this information to create a better performing embedding of the
Knowledge Graph. In [WZFC14b], jointly embedding words and Knowledge
Graph entities in the same vector space is proposed, claiming to show promising
results for increased prediction performance. Additionally, out-of-KG facts can
be predicted by using joint embeddings of facts and textual descriptions. This
is not possible in facts-alone embeddings as there is no possibility to learn any
information which is not contained in the trained KG.

Relation Path Another idea to improve Knowledge Graph Embeddings is to focus on
relation paths. While single triples only contain one hop of a relation, [LLL+15]
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claims that important patterns can only be detected by considering multi-step
relation paths as well. Additionally, a reliability measure of each relation path is
calculated to find the most reliable paths. This approach could potentially yield
good results when applied to the ExpCPS KG, as an event explanation should
be seen as a path of causality relations. However, exploring this option is not
within the scope of this thesis.

Image Enhancement Arguing that images of entities provide rich information to
improve the embedding of entities, [XLLS17] proposes to add image representa-
tions constructed by a neural image encoder to include visual information into a
Knowledge Graph representation via attention-based methods.

Logic Enhancement Addressing the fact that traditional embedding methods only
use facts (triples of the form (head, relation, tail)), [WWG15] proposes
to use logical rules by formulating them as an integer linear programming (ILP)
problem. This method converts logical rules into triples, which can be used to
train any traditional embedding method, such as TransE.

Temporal Information Arguing that most Knowledge Graphs are changing over
time, researchers have started to investigate the inclusion of temporal information
in Knowledge Graph Embeddings. Especially relations are potentially time-
variant. As an example, the triple (Bob, livesIn, Vienna) is only valid
until Bob moves to another city. To include temporal information in a Knowledge
Graph, triples are extended to quadruples of the form (head, relation,
tail, timestamp). The timestamp is describing a point in time for which
the triple is valid [HZMT21].
As temporal embedding methods are currently highly researched, many different
approaches have been proposed. There are two main components of a temporal
KGE method which can be addressed in a new embedding approach - the
temporal embedding (how the timestamps are included in an embedding) and
the embedding model (which model to use for the Knowledge Graph Embedding).
To compare the performance differences for each component separately, a meta-
analysis of temporal Knowledge Graph Embeddings was conducted by [HZMT21].
In a grid search analysis, six different temporal embeddings as well as four
different embedding methods were tested for a wide range of hyperparameters.
Interestingly, the most simple, naive timestamp embedding approach performs
as well as the more advanced embedding approach, provided that it was trained
properly.
The so-called "naive" model in this analysis is called TTransE, which is an
adaption of the conventional TransE model to include temporal facts in the
embedding. The main intuition is to embed the timestamp in the same vector
space as entities and relations. The adapted scoring function for TTransE is
defined as follows:
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TransE ||h + r ≠ t||2 O(nd + md) 7 X X X 7

TransH ||h‹r + r ≠ t‹r||22 O(nd + md) X X X 7 X
TransR ||hr + r ≠ tr||22 O(nd + mdk) X X X 7 X
RESCAL h€Mrt O(nd + md2) X X X 7 X
DistMult h€diag(r)t O(nd + md) X 7 7 7 X
HolE r€(h ı t) O(nd + md) X X X 7 X
ComplEx Re

1
h€diag(r)t

2
O(nd + md) X X X 7 X

TTransE ||h + r + z ≠ t||2 O(nd + md + od) 7 X X X 7

Table 2.2: Summary of Embedding Models and their capabilities, according to
[WWMK20]

f(h, r, t, z)T T ransE = ||h + r + z ≠ t||2 (2.11)

where z denotes the timestamp of the triple.

Summary of Models

Table 2.2 shows a summary of each model, which was discussed in detail in this section.
It shows the scoring function of each model, its space complexity as well as which types
of relations a model is able to learn. The types of relations are defined as follows:

Symmetry: a relation r is symmetric if
’x, y : r(x, y) ∆ r(y, x)

Antisymmetry: a relation r is antisymmetric if
’x, y : r(x, y) ∆ ¬r(y, x)

Inversion: relation r1 is inverse to relation r2 if
’x, y : r1(x, y) ∆ r2(y, x)

Composition: a relation r3 is composed of relations r1 and r2 if
’x, y, z : r1(x, y) · r2(y, z) ∆ r3(x, z)

1-N-Relation: a 1-N relation (also called one-to-many relation) exists if for a relation
r(x, y), each entity x is allowed multiple relations r to different entities y, while
each y is only allowed to be related to one x through relation r.
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Depending on the scoring function of a model, different types of relations can be
modelled in the embedding space. In table 2.2, we can see that none of the models
is able to encode all of the types of relations discussed in this section (more types
of relations exist than shown here, but these are some of the more important ones).
Depending on the use case, some types of relations are more important, so the choice of
an embedding model should always be guided by the characteristics of the Knowledge
Graph one wants to analyse.

Additionally, the space complexity of the models is depicted in table 2.2. n, m, o denote
the number of entities, relations, and timestamps (if applicable) of a Knowledge Graph,
while d and k are the number of dimensions of the entity and relation embedding
space, respectively (mostly d = k). While most models have a linear space complexity
regarding the number of entities and relations, TransR and RESCAL need a lot more
computational memory than the others as they need to learn more parameters during
training. Furthermore, when including temporal information, more memory is required
for training as timestamps need to be embedded as well.

2.2.4 Generation of Negative Triples
Another part of the KGE framework (as explained in figure 2.2) is the generation of
negative triples. In common machine learning tasks, there is a clear set of positive
and negative facts which an algorithm should learn to distinct. As Knowledge Graphs
are generally incomplete, meaning that true facts are potentially missing from the
data, the generation of negative facts needs some separate consideration. Generally,
there are two widely used assumptions guiding the generation of negative triples for
Knowledge Graph Embedding training: Open World Assumption (OWA) and Closed
World Assumption (CWA). [WWMK20]

In the Closed World Assumption, all facts not present in a Knowledge Graph are
assumed to be false. In this case, a simple loss function as known in Machine Learning
can be used, such as the squared error, to draw a distinction between true and false
triples. However, CWA does not hold for incomplete Knowledge Graphs (as most
KGs are). This results in bad prediction performance when using the Closed World
Assumption in a Knowledge Graph Embedding. [WWMK20]

The Open World Assumption claims that all triples present in a KG are true facts, and
all triples not present in the KG may be either false or missing facts. Therefore, it is
not possible to just use any non-observed facts as negative facts. [BUGD+13] proposed
the creation of negative triples by randomly replacing either the head or the tail of a
triple with any random entity present in the Knowledge Graph. The formula to create
a set of corrupted triples SÕ is defined as follows:

SÕ =
)
(hÕ, r, t)|hÕ œ E

* fi )
(h, r, tÕ)|tÕ œ E

*
(2.12)
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where E is the set of entities present in the Knowledge Graph. While this is an effective
way to create negative triples with low computational effort, there is a high chance of
creating false negatives.

In the paper introducing TransH [WZFC14a], the authors argued that the probability
of a false negative is depending on the type of relation in a triple. As an example, in
the triple (Bob, gender, male), there is a higher probability of creating a false
negative triple when replacing the head (i.e. (Max, gender, male) than when
replacing the tail(i.e. (Bob, gender, female). The reason is that gender is a
N-1 relation, so each head can only have one tail, while each tail can have multiple
heads. Therefore, [WZFC14a] proposed to introduce a Bernoulli distribution to assign
different weights to the probability of replacement for the head or tail in a triple based
on the number of head entities per tail and vice versa for each relation in the Knowledge
Graph in order to reduce false negatives in the embedding.

2.2.5 Loss Function
The loss function is the final layer of the Embedding Model, where the error of the
embedding is calculated based on the scores of negative and positive triples. Loss
functions are what converts the scores from any embedding model to calculate the
performance of the scores. They are necessary to update weights of a model. There are
multiple types of loss functions available. The main distinction of loss functions can be
drawn between pointwise loss functions and pairwise loss functions. In the first, each
triple is calculated separately by evaluating the score of the triple against the label
of a triple (true or false). Examples of pointwise loss functions are the squared loss,
pointwise hinge loss or pointwise logistic loss [ABH+21].

A pairwise loss function is applied to a positive triple x and a negative triple xÕ

simultaneously and computes a value for the pair of triples. The idea is to maximize
the difference in scores for positive and negative triples. The most relevant pairwise
loss functions are the margin ranking loss (pairwise hinge loss) and the pairwise logistic
loss. The margin ranking loss is defined as follows [ABH+21]:

L(x, xÕ)hinge = max
!
0, f(x) + “ ≠ f(xÕ)

"
(2.13)

where “ is the margin parameter separating the two triples.

The pairwise logistic loss is defined as follows [ABH+21]:

L(x, xÕ)logistic = log(1 + exp
!
f(x) ≠ f(xÕ) + “

"
(2.14)

Additionally, a regularizer can be applied to the loss function, such as an L1, L2 or L3
regularizer. For convolutional approaches, dropout can also be used. [CPMJ20]
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2.2.6 Optimizer
Once all components, which make up the core of a Knowledge Graph Embedding, are
defined, there is only one final piece missing: the optimizer. Even though not directly
related to the embedding model itself, the optimizer is used to define the learning rate
throughout model training. Here, the same optimizers can be used as in usual machine
learning models. Therefore, either a fixed learning rate can be defined or any learning
rate scheduler can be used, such as SGD, Adam or AdaGrad. These schedulers define
the learning rate dynamically for each training epoch based on previous performance
improvements.

Now, based on the definition of all five elements - Lookup Layer, Scoring Layer, Loss
Function, Generation of Negative Triples and Optimizer - the embedding is ready
to be trained. For this, the training data is repeatedly passed through the training
architecture, aiming to improve the performance in each epoch. By using multiple
epochs, in which the training data is fully passed through the training algorithm, training
loss should be minimized to optimize prediction performance of the embedding.

2.3 Event Explainability
The goal of using KGE on the ExpCPS Knowledge Graph is to improve link prediction
on causality links between events in the simulated smart grid system, which is a Cyber-
Physical Energy System. In essence, causality prediction is a tool to find explanations
of events in a system. Finding these new causedBy connections helps to improve the
explainability of the energy system overall. Currently, existing literature contains a
vast amount of papers on KGE for link prediction and Knowledge Graph completion, as
well as on attempts to make cyber-physical systems more transparent and explainable.
However, extensive research has not uncovered any research focussed on applying KGE
to improve the event explainability of a running CPS. In this section, a definition of
event explainability is given as well as current methods to achieve it.

At first, the concept of an event should be properly defined for future use in this thesis.
In [WMT+07], the definition of an event is as follows: "an event refers to a real-world
occurrence that unfolds over space and time". This definition shows the importance of
the two dimensions (space and time) for any event. Therefore, any analysis of events
needs to consider these two layers as any event is staged during a certain time at a
certain place.

Event Explainability as such is a trickier term to define. For this thesis, the definition of
[Ary21] is used as this definition was also used when creating the ExpCPS Knowledge
Graph:

"Explainability is the ability of a (software) system to provide explanations
about its states or behaviors in terms of a set of facts."
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Event though causality is not explicitly mentioned in this definition, it is a crucial
aspect of being able to explain how a system’s state happened to occur. Therefore,
causality between a set of facts and the system’s behaviors is implicitly assumed in
this definition. Hence, the term causality should be investigated further as well. Even
though causality seems to be a trivial concept at first, its definition has occupied many
philosophers and researchers for thousands of years. Nobel Price Winner Clive Granger
has defined the Granger-Causality, which is based on prediction. It addresses the
differences between correlations between events which happen by chance and actual
causality, which he calls "Granger-Causality".

"If a signal X1 "Granger-causes" (or "G-causes") a signal X2, then past
values of X1 should contain information that helps predict X2 above and
beyond the information contained in past values of X2 alone." [Set07]

This definition shows the importance of a connection between two events to assume
causality. The connection needs to be backed by data to be valid, especially considering
that humans tend to find connections to prove causalities even though they are non-
existent in data.

2.3.1 Finding Causality in connected environments
As systems are becoming more complex, there is an increasing need for explanations
of why any given event is happening in a system. To achieve this goal, events need
to be analysed to find their potential causes. Researchers aim to find causalities
between entities and events in many different research domains as causality is what
is needed to derive suggested changes in a system. Randomized controlled trials are
the gold standard to discover causal relationships between two events. They require a
controlled experiment setup, where a single change can be made in a setup to measure
its impact. These experiments are however very difficult to set up, costly and for
some situations not possible to conduct. Therefore, causal analysis by inferring causal
relationships through modelling cause-effect relationships from observational data have
been developed in recent years [JGC+21]. The idea is to use computational models,
such as graphical models or deep neural networks to derive causalities from event
sequences.

For any model aiming to find causalities in observational data, two main problems need
to be addressed: event detection and event explanation. Event detection implies the
task of finding events in a system based on a set of observations. Event explanation,
on the other hand, is concerned with finding explanations for an existing set of events
based on observations that happened during or right before an event. While a lot of
researchers work on solutions for event detection, less research has been published on
finding event explanations. The two main approaches mentioned in [GSL+21] are using
machine learning models to enrich video sources to get event explanations during a
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video sequence (which requires access to relevant videos) or working with heterogeneous
data sources from different sensors to interpret events.

As this thesis is working with a simulated Cyber-Physical System, the first approach,
which is fostering video material for causality detection, is not applicable to the available
data. However, the latter approach uses the same kind of data as the data in the ExpCPS
use case and will therefore be investigated further. The core problems addressed by
any framework considering event explanation using heterogenous data sources is the
integration process of multiple data sources to make the data usable for analysis and,
further, to facilitate interpretability [GSL+21, WZL06]. All frameworks mentioned in
[GSL+21], which work on integrating multiple heterogeneous data sources, are applying
semantic technologies in some way or another. As storing complex heterogeneous data
sources and their connections in one system is what semantic technologies are designed
for, they seem to be a good fit for this use case. These features can be exploited in the
next steps as well, where I am aiming at finding explanations of a system’s behaviour.
Semantic research also enables researchers to use existing general-purpose knowledge
about a system for analysing its behaviour [Ste18].

2.3.2 Explainability in Cyber-Physical Systems
Even though the process of integrating information to make it centrally available
is crucial for any further use of the data collected by sensors, explainability is not
automatically achieved by just making data available. An additional step is needed
to create an explainable system. [BGCG+19] proposed a framework called MAB-EX
(Monitor, Analyze, Build, Explain) to build self-explainable Cyber-Physical Systems.
The proposed framework uses four steps to find explanations when needed:

1. Monitor the system and its environment at run-time

2. Analyse the monitored data and identify situations which request an explanation

3. Build an explanation for the given situation

4. Provide the explanation to stakeholders in an appropriate form.

While all of these four steps are needed to provide a fully self-explainable system, step
3 - building an explanation for a given situation - will be the core problem addressed
by this thesis. Steps 1 and 2 have already been addressed in the development of the
ExpCPS Knowledge Graph [AES+20, AES+21]. Processing new-found explanations
further to make them understandable to stakeholders, as suggested in step 4, will be
an interesting topic for further research.

CPS have benefitted a lot from machine learning models. Compared to their prede-
cessors, smart systems have better capabilities for "self-healing, situational awareness,
information interaction and stability" [XLL+22]. However, with increasing performance
of machine learning and AI models, the complexity of decision-making within a system
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has increased a lot in recent years. By using Machine Learning (ML) algorithms, new
relationships can be found, as complex mechanisms in the system can be modelled
and learned. This means that ML models can break through the barrier of existing
knowledge, uncovering possibly important new knowledge. However, with more complex
models and increased prediction performance interpretability has become worse. This
is a problem especially for domains with critical infrastructure, where interpretability
of the decision-making process is crucial [XLL+22]. When a model is deployed in a
working environment, faulty decisions can have a direct impact on users’ well-being,
comfort, and security.

While many explainability approaches focus on the decision-making process based
on the input data, explaining what has happened, what is currently going on, and
what will occur in the future [GSC+19], there are additional factors which need to be
considered to get a truly explainable system. First, the type of explanation needed for
a system is highly dependent on the domain it is operating in. A system applied in the
legal domain needs to focus on different types of explanations than a system deployed
at a production site. Second, there are many different types of users interacting with
a system, at different points in time. Explainability should consider this by giving
adequate explanations catered to the needs of a user. For example, in a smart grid a
system operator may want explanations on system failures to know which components
are at fault or which parts of the system need further investigations on possible
improvements. In contrast, an energy consumer needing to charge an electric vehicle
may want to know how much energy will be produced and available in the next hours.

Shifting from Explainable AI systems to Explainable CPS, considering the context
and users is even more important for expCPS than for XAI. As XAI models aim to
explain the workings of an algorithm, they often overlook the impact of physical and
virtual influences on the system decisions. The goal of expCPS is to take external
influences on an event into account as well. While the process of a decision-making
model in the background is only one part a user is interested it, the main goal is to
find an explanation based on changes in the system context, such as increased solar
intensity leading to increased energy production. Therefore, model-agnostic explanation
systems aim to retrieve explanations from a system’s historical data without analysing
or interrupting the CPS itself [Jha22].

2.3.3 Semantic Technologies for Explainability
Semantic Technologies are designed to store complex and heterogeneous data and their
connections. These features can be exploited when aiming to find explanations of
a system behaviour in CPS. Semantic Research enables researchers to use existing
general-purpose knowledge about a system for finding causality relationships between
events [Ste18]. Especially when faced with heterogeneous data sources, all papers
describing event explainability in connected environments use semantic technologies
to model the data. Ontologies, which are used to build a semantic data model, are
designed to capture complex relationships, different types of sensor data and their

31



2.3. Event Explainability

connections. In 2012, an ontology was proposed as a basic data model to store sensor
data called Semantic Sensor Network Ontology [CBB+12]. The proposed ontology
defines how sensors, measurements and observations as well as sensor deployments
should be stored. Based on this work, many additional extensions have been developed
to fit this ontology to specific use cases, such as smart building diagnosis [PSL14] or
connected environments [Man19]. Based on the work of [PSL14], [AES+21] investigated
the use of Knowledge Graphs for solving the problem of system explainability in a
Cyber-Physical Energy System. The framework merges data from multiple sources,
such as simulation data, system setup and known causality relations.

All these ontologies help to collectively store heterogeneous data sources in one data
model to enable causality analysis of a system. However, none of them has yet suggested
a solution to actually derive causality from the data model. Currently, causalities are
extracted from a data model by using domain expert knowledge to learn potential
causalities and querying them in the data. In [ADES21], connections and causal
relations between components of the smart grid are added to the existing Knowledge
Graph by domain experts. For this, domain expert knowledge was broken down into
rules to be able to query causalities in the Knowledge Graph using SPARQL. Even
though using SPARQL queries assists in capturing events with the same setup efficiently,
this approach is still labour-intensive and is dependent on known rules which are defined
by domain experts. Therefore, a new approach is tested in this thesis: using Knowledge
Graph Embeddings for embedding the ExpCPS Knowledge Graph in a low-dimensional
vector space to derive new information based on the existing data.
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CHAPTER 3
Methodology

In this chapter, the tools and methods used in the thesis will be explained in detail.
Decisions on the choice of models, experiment architecture and evaluation metrics will
be presented and the reasons behind these choices will be elaborated and discussed.
The first section is based on the embedding methods presented in section 2.2. The focus
will be on defining the most suitable KGE models to be implemented to address the
research questions, depending on the use case and their features. In the process, reasons
for design and methodology decisions will be given. In the second section, the training
architecture used in the experiments will be explained in more detail, accompanied with
reasons on why this architecture was chosen as well as its advantages and necessary
assumptions to be made. In the final section of this chapter, the evaluation metrics
used to evaluate the models will be explained. This includes the formulas of the metrics
as well as what aspect of performance they represent.

3.1 Knowledge Graph Embedding Methods
In section 2.2, a detailed analysis of well-known Knowledge Graph Embedding tech-
niques and their intuitions was given. An analysis of prediction performances for all
models on benchmark Knowledge Graphs (based on Wordnet and Freebase) was con-
ducted in [DWXG20]. In this analysis, TransG was one of the best performing models
in the analysis over both datasets. As already mentioned in the previous chapter, the
main improvement of TransG and KG2E compared to other translational models is
their ability to model uncertainty in semantics. This feature can improve performance
drastically for the benchmark KGs, such as Wordnet, as these KGs contain a lot of
entities and relations based on natural language, resulting in ambiguous and uncertain
relations. However, this is not a major issue with the ExpCPS Knowledge Graph used
in this thesis as no data is derived from natural language data. The ExpCPS KG
is modelling a simulation of a smart grid, where observations made by sensors are
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modelled in a Knowledge Graph. This simulation is explicitly defined to have clear
connections with unambiguous names and is complete in itself. Therefore, uncertainty
should not be an issue. Furthermore, the increased complexity which is introduced by
considering multiple Gaussian distributions requires high computational efforts which
can not be addressed in this thesis.

To chose the right model for the link prediction task of ExpCPS Knowledge Graph, I
want to analyse the types of relations present in the KG and which models are able
to represent them in an embedding. Based on the schematic model of the ExpCPS
Knowledge Graph in figure 1.2, the types of relations present in the graph can be
analysed. A detailed introduction to the Knowledge Graph and the data will be
available later in the thesis (section 1.3).

Symmetric relations are present through the relation hasConnection, which
indicates that two features of interest are physically connected to each other. Symmetry
cannot be modelled by a TransE model based on table 2.2.

Antisymmetric relations are an important part of the graph, as the causedBy
relation is antisymmetric. As already mentioned before, the causedBy relation is a
crucial relation in the experiment as this is the relation which should be predicted by
the models. Additionally, there is only a very limited number of causedBy relations
in the data, compared to the other relations, making it even more important to find a
model which can correctly represent this type of relation. All models except DistMult
can model antisymmetry.

Inversion is not present in the Knowledge Graph, so the ability of a model to represent
inversion is negligible. Composition, on the other hand, plays an important role in
the KG. The connections between entities, which are composed of multiple triples are
relevant to understand the overall picture in a Knowledge Graph. Especially in the
ExpCPS KG, the goal is not to model simple relations, but to understand the entirety
of the graph and its connections. For example, no event is directly connected to a
timestamp, but it is connected to an observation, which contains a timestamp. This
composition can be important for model performance. Unfortunately, only TransE can
inherently model compositional relations.

Finally, 1-N relations are also crucial in the KG as multiple observations are connected
to a single feature of interest. Moreover, an event can potentially have multiple causes
to form a full explanation. This is a feature of the Knowledge Graph which needs to
be addressed, as the inherent reason to use a Knowledge Graph for modelling the data
is the possibility to connect observations to their context. The importance and the
setting around an observation can only be comprehended by including the sensor which
measured the observation and the location of the feature of interest. Except TransE,
all KGE models can process 1-N relations.

After having considered various types of relations and their importance in the ExpCPS
Knowledge Graph, there is not a single model which can model all important types of
relations in the graph. As no model fits the job perfectly, I decided to use four different
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models to test their performance and check how well they can predict relations in the
Knowledge Graph. The idea was to use models based on different intuitions to check
which one works best.

The first model to be tested is TransE, as it is the only model which can work with
compositional relations. Additionally, it is one of the first KGE models which has
been proposed and it uses a very simple scoring function. Hence, it can be used as a
baseline model for more complex setups. TransE will also be used in this experiment
as a representation of the translational KGE models.

As an improved version of a translational model, TransH shows promising results in a
performance analysis. Since TransH requires less memory than TransR with similar
performance results, TransH is the second model added to the analysis. Generally,
TransH is expected to better model the relations between various entities as is uses
separate hyperplanes for each type of relation.

As a representative for semantic matching models, ComplEx is applied as well. ComplEx
is the model which is recommended to be used for initial analysis when starting with
KGE on any Knowledge Graph, according to [DWXG20], as it generally shows very
good results even when using default parameters. Moreover, ComplEx shows the best
results of semantic matching models in the benchmark KGs.

Finally, TTransE (model four) will be used to test the effect of using temporal infor-
mation directly in a KGE. Since the model is a very simple extension of TransE, the
direct comparison of TransE and TTransE can show the direct effect of timestamps
added to each triple.

Overall, a set of four KGE models will be tested in the thesis. Three models, which are
based on a translational approach (TransE, TransH, TTransE) and one model based
on a semantic matching approach (ComplEx). TTransE will be used to check the effect
of using an enhanced embedding method, as it incorporates temporal information into
the embedding, which is not directly considered in the other models.

3.2 Training Data Architecture
Now that the embedding methods to be used in the experiment are defined, the next
topic to be considered is the data setup for conducting the experiment. As in all
Machine Learning projects, the data needs to be split into a training set, a test set, and
a validation set. The training set will be used to train the embedding models, while the
test set is used to determine the performance of the embeddings. Only in the last step,
when the training process is finished and the final state of the model is determined,
the validation set is used to measure the model performance on new, unseen data. The
validation set aims to imitate new data which has not been seen by the model before.

While this approach seems reasonable and straight-forward, the setup of the ExpCPS
Knowledge Graph makes it difficult to implement this approach. Since the goal of using
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topology inferred time events explanation
Village A train/test train/test train/test train/test train/test
Village B train/test train/test train/test train/test validation

Table 3.1: Training, test and validation split of the simulation data for model training

embedding models was to find new causedBy relations, multiple splits containing
this relation are necessary. However, only 85 causedBy relations are present in the
first data set. While this is a good start, splitting these events into training, test, and
validation would have resulted in very small subsets. Possibly, some events would only
occur in one of the three subsets, which would result in the model not knowing what
to do with unknown entities. Additionally, splitting the events randomly instead of
timewise would distort the idea of finding a model which can be used for new events
happening after the training data.

As the target relation, which we aim to predict, contains only a very small number
of objects, splitting this relation into three subsets does not seem reasonable. The
problem is that the data set is already very small for a machine learning setup and
there are only very few examples available for a model to learn the correct embedding.
However, there is one key advantage of the ExpCPS data, which can be used to tackle
these issues. As the data set is not a static data set, which was collected once, but
is based on simulation data, running the simulation multiple times is very cheap and
fast compared to collecting real data. Therefore, the simulation could either be run
multiple times, or the simulation could be run for a longer time period, creating more
data and more events. However, just running the same village setup for a longer period
of time would probably not create a lot of new data. More likely, it would repeat the
same daily simulation multiple times with only minor differences between the days by
introducing some noise. While this approach may still provide some valuable input in
the future, the huge amount of data needed to achieve improvements in the embedding
model with this approach was not feasible in this thesis.

As an alternative approach, I propose to create two independent energy villages in
the BIFROST simulation framework, which contain similar buildings and devices,
but are still distinct from each other. These two villages will be called VillageA and
VillageB from now on. The main benefit of this approach is that the trained models
can be tested on a new village. The goal would be to see whether the models overfit
on village-specific characteristics, or whether they managed to learn the semantics
of relations between devices and derive causalities based on the connections between
devices in the system.

As KGEs cannot work with unseen entities, such as buildings, which are only present
in one of the two villages, the proposed idea is to train the embedding model on
data from both villages, while withholding any causedBy relations from VillageB.
With this setup, an embedding model has the opportunity to learn the setup of both

36



3.2. Training Data Architecture

villages (connections between features, registered observation, etc.), but only learns
the causality relations of VillageA. For evaluation of a model, we then ask the model
to predict causedBy relations for events of VillageB to check whether the events and
their connections are embedded correctly.

In table 3.1, the proposed split of data sets is shown. For the training process, all
the information available from Village A is included, as well as the topology, general
causalities, observations and events from Village B. The event explanations in Village B
are not used for training at all. The training data is then randomly split into a training
and test set in an 80/20 ratio. This approach may seem to include a lot of information in
the training data. However, looking at the data in detail, only information which would
also be available in a real-time setting is used in the training data. The topology contains
information about the location of buildings and their connections. This information
is known for any village, which is modelled by a Knowledge Graph. The inferred
data contains generally known potential causalities, which are not time-dependent
and can be derived even without knowing anything about actual observations in a
village. The data in the time and events data set are trickier to argue. In a live-setting,
only observations and events from the past would be available, compared to all the
events and observations of one day for this setup. However, live-explanations would
require to re-train the models for each timestamp (currently 1h). Training any of the
chosen models takes more than one hour, so this approach would not be possible in a
live-setting for now. However, the data could be trained at the end of each day, which
would result in an explanation being available with a delay of one day. In this case,
the data in the current training split would be fully available in a live-setting as well.

While this approach was not found as such in the literature, it leverages ideas from
several concepts. Semi-supervised learning was introduced for problems with too few
labelled data and aimed to leverage unlabeled data to improve prediction performance.
As this approach assumes that the distributions in labelled and unlabelled data are the
same, semi-supervised models can only be applied for very similar problems. Transfer
learning was introduced to address this issue, aiming to use previous knowledge for
any task which is vaguely related [PY10].

In the use case of ExpCPS, the issue is not the difference in domains, but the difference
in village setups. The proposed approach also does not really train any model on
a single village as both village setups are used in one training phase. The idea of
simulating two independent villages may have more in common with data augmentation
tasks as the setup is creating new events and causalities, which are different to those
in the training data.

Finally, applying a transfer learning approach for Knowledge Graph embeddings could
be investigated in further research. This would reduce the computational effort needed
to make predictions on a new village.
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3.3 Evaluation
The performance of the chosen KGE models using the training architecture described
above needs to be measured. There are three stages of performance evaluation in this
experiment. In the first stage, the performance of the models on the test split of the
training data will be evaluated. This evaluation will give a very brief overview on
performance differences of the four trained models. In the second stage, the models
will be evaluated on four target categories of Village B:

• inferred the model performance when trying to predict potential causalities
between sensors

• explanation model performance when predicting causal relationships between
events (this is the most crucial category for the experiment, but also the category
containing the least data. Hence, the performance will probably be low). Also,
this is the only data, which was not in the training and test data during the
training process of the models.

• events based on observations and locations, the identification of events is pre-
dicted

• all this category contains the full data set, measuring the overall performance of
the model on all triples in the Village B Knowledge Graph

In the final stage of evaluation, the ability of any trained embedding model to predict
causality links between events will be evaluated. In this stage, each model will be
analysed in detail, checking their strengths and weaknesses on different types of events
and for various timestamps. Additionally, their performance on previously unknown
causalities will be evaluated. To identify previously unknown facts, a manual evaluation
of the top 5 predictions of each model was conducted by knowledge engineers. For each
prediction, the likelihood of it being a true fact, which was missed by the original KG,
is defined.

3.3.1 Evaluation Metrics
Evaluation Metrics of any model for Knowledge Graphs need to evaluate performance
by using the Open World Assumption (OWA) as Knowledge Graphs are potentially
highly incomplete. OWA means that any facts not existing in the original Knowledge
Graph are not automatically negative facts. They might be negative facts, or positive
facts missing from the original KG. This is why novel link prediction can be performed
on a Knowledge Graph and it is even one of the major tasks for which embedding
methods aim to offer a solution.

As there are no explicit negative facts in a Knowledge Graph, traditional performance
metrics in Machine Learning, such as Precision and Recall, cannot be applied. However,
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as already used in NLP algorithms, rank-based performance metrics are suitable for
performance evaluation of KGEs. Rank-based metrics work by considering the rank of
true facts assigned by a model. For a set of test triples, either the head, relation or
tail of a triple is removed. Then, the model tries to predict which entity or relation
may be missing from a triple. As tail prediction is the focus of this experiment, all
performance metrics will be tested on the prediction of the tail of a triple. For the
missing tail, all potential entities in the graph will be assigned a score. A high score is
assigned to tails, which the model thinks is likely true, while a low score is assigned to
unlikely tails. Based on this score, the potential tails can be ranked from likeliest to
unlikeliest. Rank-based metrics are then considering the ranking of a set of facts and
measure the position of known true facts in the ranking. The two rank-based metrics
used for evaluation in this thesis are hits@k and arithmetic mean rank, as they are
most-used in other papers on the performance of KGEs as well.

hits@k One of the simplest rank-based metrics is hits@k, where k is usually a number
between 1 and 10. For each triple in the test set, the tail is removed to calculate
the score of each possible entity. Then, all the potential candidates are ranked by
their score, and the top k candidates are checked whether they form a valid/true
fact. The fraction of true entities in the first k entries of the ranking list is
the value of the hits@k metric. Therefore, the hits@k metric is always a value
between 0 and 1, where a higher value represents better model performance.
The intuition behind the hits@k metric is coming from the recommender-system
domain, as only very few recommendations will be considered by a user when
looking for a relevant recommendation.

arithmetic mean rank The second metric used to measure the performance of the
four KGE models is mean rank. It computes the arithmetic mean of all ranks of
positive entities. Compared to hits@k, mean rank takes all performance changes
into account and does not contain a cutoff point. Therefore, the mean rank is
representing the average performance of a model. The arithmetic mean rank is
always a value in the interval [1, Œ], where a smaller mean rank indicates better
overall performance of a model.

Based on these two metrics, the model performances will be evaluated. Both metrics
should be analysed in detail, as they show different angles of the suitability and
performance of a KGE model.
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CHAPTER 4
Experiment Design

At this point, the reader should know all the theoretical concepts and tools involved in
running the experiments of the thesis. This chapter will focus on the specific settings,
data and evaluation methods used to conduct the experiments. In the first section,
the data (Knowledge Graph) will be explained in detail. While previous sections have
already explained the general setup of the ExpCPS KG and the idea of using two
villages for conducting the experiments, this section will show the types of features
and events present in each village. A detailed analysis of the ground truth present in
the simulated data will be conducted to get a feeling of the possible causal relations
between two events and to be able to interpret the model results in the next chapter.
Following the explanation of the data, section 4.2 will focus on the experimental setup,
including the tools and libraries used in the experiments as well as steps involved to
reach the final results. In the final section of this chapter, the evaluation to measure
model performance will be explained. While the formula and meaning of the evaluation
metrics have already been explained in the previous chapter, the evaluation setup in
this specific experiment will be covered and explained in-depth.

4.1 Data Structure
The data used in the following experiment is created by running two simulation runs
in BIFROST for two distinct villages, called Village A and Village B. By running the
BIFROST simulation and sending the resulting data through the data pipeline as it was
explained in section 1.3.1, a set of knowledge graphs was created for each of the village
setups. The simulation in Village A was run for 23 hours (01:00 until 23:00), while the
simulation in Village B was run for 24 hours (01:00 until 00:00 the next day). Each
village has a slightly different setup, which can be analysed in detail in table 4.1. In this
table, the features present in each energy village are listed as well as the prevalence of
each feature type in village A and B. Each feature has different properties, which can be
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Feature A B Feature A B
airship 1 1 grid-node 95 110

battery-storage-small 1 1 household-battery 1 1
billboard 1 1 lv-transformer 1 1

cable-underground-sd 118 140 powergrid-connector 22 30
charging-pole 1 1 powerswitch 1 1

commercial-battery-small 1 1 residential-multi-medium 1 1
commercial-factory 4 4 residential-single 7 9

commercial-single 5 9 router 1 1
data-connection-wired 51 51 solar-panel 4 4

data-node 41 41 trafo-building 1 1
datagrid-connector 17 17 vertical-farm-big 2 2

ev-station 2 2 grocery-store - 2
Total 379 432

Table 4.1: features of interest present in Village A and Village B

measured. As an example there are sensors connected to an underground cable, which
measure cable length, current and loading of the cable. An airship, which is responsible
for creating weather data features sensors concerning a climate model, precipitation
and temperature measurements. Each village setup contains exactly one airship for
measuring weather data, one billboard, which is responsible for administering flexibility
requests, and one transformer, monitoring loadings in the village overall.

By adding two additional residential houses and four commercial buildings in Village
B compared to Village A, additional underground cables, grid nodes and power grid-
connectors are included in the simulated village. There is an overview of the two
villages shown in table 4.2. For each sub graph of the Knowledge Graph setup, a
general overview of the most important entities of each graph is given. During the
simulation run of 23 and 24 hours respectively, 25 067 and 30 075 observations were
measured in Village A and Village B respectively. Based on these observations, 107
and 191 events were created by the Event Annotator. There are ten different types
of events occuring in the villages, which can be inspected in table 4.3. Two types of
events did only occur in Village B. In Village A, 12 events can be explained by at least
one cause event through the causedBy relation. A set of cause events, which explain
an event is called an explanation. In Village B, 17 events contain an explanation. In
Village A, each event in the explanation graph contains 7.1 cause events on average,
while there are 7.8 cause events on average in Village B. In total, there are 85 cause
events in village A and 133 of them in village B. Conclusively, village B is slightly
bigger than village A, as there are more buildings in the setup and more events were
registered during the simulation period. Interestingly, there are two types of events in
village B, which were not registered at any point in time in village A. These events will
be especially interesting to analyse as there is no direct information on event causality
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subset Village A Village B
topology 1,004 sensors for 379 features of

interest, 23 types of features
1,203 sensors for 432 features of
Interest, 24 types of features

timestamps 25,067 observations for 23
hours, on 1973-12-25, 01:00:40 –
23:00:40

30,075 observations for 23
hours, on 1973-12-25, 01:00:40 –
00:00:40

inferred 57 potential causes between sen-
sors

77 potential causes between sen-
sors

events 107 events of 8 unique types 191 events of 10 unique types
explanations 85 explanations for 12 different

events
133 explanations for 17 different
events

Table 4.2: general facts about the simulated village setup

connections of these event types available during model training.

4.1.1 Event Analysis
The meanings and connections of events are a core subject of the thesis. Table 4.3
contains a detailed overview of the ten event types occurring in the simulations, their
defining properties and the number of occurrences in each village. The events can be
grouped into four categories: Charging Events, Flexibility Events, Demand Events and
Loading Events. While Charging events are events depending on the charging state of
a battery, flexibility events are events related to a flexibility request, which is posed
from outside the village. Demand and Loading events are defined depending on the
relation between energy production and demand in the village. The exact definition of
each type of event is given in the following description.

Charging Event Based on the State-of-Charge of a commercial battery, this event
occurs when the battery level is increasing, indicating that the battery is currently
charging. This event can only occur at a commercial battery.

Discharging Event Based on the State-of-Charge of a commercial battery, this event
occurs when the battery level is decreasing, indicating that a battery is currently
discharging. This event can only occur at a commercial battery.

FlexContributedEvent This event indicates a flexibility request from the billboard
to a residential or commercial building. It shows a request to provide additional
electricity, or to consume more energy within the village to balance the fluctuations
in a connected network. This request can happen in both directions, either
reducing or increasing power consumption.

FlexRequestApprovedEvent and FlexRequestRejectedEvent Following a Flex-
ContributedEvent, the request can either be approved or rejected. Based on the
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Event Defining Property A B
ChargingEvent Battery State-of-Charge 10 7
DischargingEvent Battery State-of-Charge 12 17
FlexContributedEvent Power Distribution 51 87
FlexRequestApprovedEvent Available Flexibility 7 6
FlexRequestRejectedEvent Available Flexibility 0 2
FlexUnavailableState Available Flexibility 0 4
LoweringDemandEvent State of Active Power 5 9
PeakingDemandEvent State of Active Power 5 9
OverloadingEvent Loading Rate 9 25
NormalizingEvent Loading Rate 8 25

Table 4.3: A list of event types, their definitions and their number of occurences in
Village A and B

available flexibility in the requested building, the request will be evaluated. If
enough flexibilities are available, the request can be approved. Otherwise, it will
be rejected.

FlexUnavailableState If the flexibility state of a building is not available or cannot
be determined, the response to a FlexContributedEvent is FlexUnavailableState.
This means that the request can neither be approved nor rejected as the required
data is not available.

LoweringDemandEvent based on the active power at a certain location, a Lower-
ingDemandEvent is registered if the active power is decreasing.

PeakingDemandEvent based on active power, exceptionally high power demand is
registered as a PeakingDemandEvent.

OverloadingEvent The loading rate of a feature is measured as a percentage and indi-
cates the load factor. A loading rate above 60% will trigger an OverloadingEvent.

NormalizingEvent After an OverloadingEvent, the reduction of the loading rate to
below 60% will be registered as a NormalizingEvent. This event shows that the
overloading event is not relevant anymore.

4.1.2 Causality Data Analysis
Following the definition of events, the causal relations between events in the data are
the next important step to analyse. While the causal connection between two events
is very much dependent on the situation, analysing recurring patterns can help in
understanding the possible relations better. The main idea behind this analysis is
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Figure 4.1: Number of events containing an explanation for each event type per village

to find out whether there is a certain type of event, which is the main cause in any
explanation of another type of event.

In the validation data, there is a set of 17 events for which explanations exist, containing
at least one event which is known to be a true cause of the event. There are 7 types of
events, for which an explanation exists. In figure 4.1, the distribution of event types
for events which hold explanations is shown. The event type, which is by far the most
represented in the explained event data is FlexRequestApproved events. There is a total
of 6 explanations for FlexRequestApproved events. While FlexUnavailableState has
four explained events, all other event types have a maximum of two event explanations.

In the training data (Village A), there are a lot less explanations present in general.
First, there is no explanation for any FlexRequestRejected or FlexUnavailableState
Event in village A. This means that there is no explicit training on the explanation of
these two event explanations at all. Additionally, there is a big difference between the
number of explained events per event type. The general tendencies are very similar in
both villages. In Village A, there is only one explained event for the majority of event
types. Looking at the results, it will be interesting if the number of explanations in
the training data will have an effect on model performance on different event types.

In table 4.5, the distribution of causal events for any of the 17 events containing an
explanation is shown. At the top of the table, a list of the seven event types is shown.
These are all types of events, for which an explanation exists in any of the two villages.
On the left side, all seven event types are listed, which are causes in any explanation.
Each event explanation contains multiple cause events, which are of different event
types. In this table, the average distribution of event types for each event explanation
is shown separately for village A and village B.

44



4.1. Data Structure

Looking at the table more closely, a few interesting characteristics can be observed.
Generally, one would expect to find the same cause events for an event type in
each village, as seen for PeakingDemand. Here, even though not having the same
distribution of event types, the event explanations contain the same three event types
(FlexContributed, LoweringDemand, PeakingDemand). However, for some events,
there is no similarity between the two villages at all, as can be seen for the Normalizing
event. In village A, explanations contain FlexRequestApproved and PeakingDemand
events, while in village B, only FlexRequestRejected and LoweringDemand events
are present in the event explanation. Moreover, two event types did not have an
explanation in village A, but they do in village B. FlexRequestRejected as well as
FlexUnavailableState are the two event types, which did not occur in village A at all
(as can be seen in table 4.3 and figure 4.1 as well).

A visual representation of causality flows is shown in figure 4.2. Based on the data in
table 4.5, an arrow shows any occurrence of causal explanation between two types of
events in either village A or village B. This flowchart shows that there are basically
three hierarchy levels in the causality relations between events. On level one (left side of
the graph), the event types are never explained, but they provide explanations for other
events. The three events on this level are Charging, Discharging and FlexContributed.
On level two, events can be explained and, further, provide an explanation for other
events, creating an explanation path. In the final level, there are events which can be
explained, but do not provide further explanations of other events.

This graph will be useful for analysing the prediction results of KGE models, as it
shows whether or not a causal relation exists in the data. For example, if a model
predicts that an overloading event causes a discharging event, this graph shows that
this causal relation is very unlikely according to the ground truth data.
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Effect Event FlexRequest
Approved

FlexRequest
Rejected

Flex
Unavailable

State

Lowering
Demand Normalizing Overloading Peaking

Demand

Cause Event A B A B A B A B A B A B A B
Charging 7% 14% - - - - - - - - - - - -
Discharging 13% - - 50% - 13% - - - - - - - -
FlexContributed 80% 86% - 50% - 87% 80% 78% - - - - 21% 58%
FlexRequestApproved - - - - - - - - 50% - 50% 33% - -
FlexRequestRejected - - - - - - - - - 50% - 33% - -
LoweringDemand - - - - - - - 22% - 50% - 33% 26% 17%
PeakingDemand - - - - - - 20% - 50% - 50% - 53% 25%

Table 4.5: Distribution of event types causing effect events in the explanation data

Figure 4.2: Flow chart of causality paths in explanation data of village A and B
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Figure 4.3: Causality network in village B

In figure 4.3, the causality network in village B is shown. Each green node represents
an event for which an explanation exists, while the blue dots represent the cause
events. Directed edges show the causality relations between events (EventA –causes–>
EventB).

This network graph shows that there are three connected graphs in the data, which
form a set of related causalities each. Some explanations are very independent from
others, while some of them are highly interconnected. Additionally, some of the effect
events are causes of other effect events, creating a multi-step causality path. In the
ground truth data, only direct causes are listed as true causes.

In the top section of figure 4.3, a more detailed view of the section marked in red
is shown. There, an example of a causality path is shown. While according to the
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ground truth only one event - FlexRequestRejectedEvent:1 - is the cause of
OverloadingEvent:2, there are four events, which are causing FlexRequestRejectedEvent:1.
Therefore, they are indirectly causing OverloadingEvent:2 as well. This fact ex-
pands the number of true causes from one direct cause to five causes.

4.1.3 Preprocessing steps
As a last step before implementing the KGE models and feeding the ExpCPS Knowledge
Graph into the embedding models for training, some minor preprocessing steps were
conducted to fit the data to the models. Some observation-timestamps did not comply
with the time frame of the simulation. These timestamps marked a time before the
start of the simulation. This is not a big error as these observations are time-invariant,
such as cable length. Nonetheless, for consistency, these timestamps were reset to the
time of the start of the simulation.

For traditional KGE methods, a set of triples is fed to a model for training the
embedding. However, as not only traditional Knowledge Graph Embedding methods
are used, but also a Temporal KGE, the triples needed to be extended to quadruples
for the temporal embeddings. 1

After inital preprocessing steps, the data was split into training and validation set.
As already described in section 3.2, the training set consists of all the data available
from Village A and all the data available from Village B, except the explanation graph,
which contains the causedBy relations. The explanation data from Village B serves
as the validation data set. For the training process, only training data was used, which
was split into training and test data randomly with a split of 80% training data and
20% test data.

4.2 Experimental Setup
Following the explanation of the data structure of the ExpCPS Knowledge Graph that
is used in the experiment, this section will focus on the experimental setup. All the
Knowledge Graph Embedding Methods were implemented in python using pytorch,
which is a highly flexible deep learning framework for python. The pykeen package
[ABH+21] is a framework built for reproducible knowledge graph embeddings. The
pykeen implementations of TransE, TransH and ComplEx were used in this thesis. As
TTransE is using quadruples instead of triples, another framework is needed to run
the TTransE model on the data. For this model, the implementation of [HZMT21]
was used. The initial Knowledge Graph was analysed in a local instance of GraphDB.
For preprocessing and result analysis, additional python packages, such as pandas,
matplotlib and seaborn were used. The whole experiment setup is available on GitHub,
including the preprocessing steps, model training and evaluation. A full list of required

1Detailed preprocessing steps are available at https://github.com/Kat-rin-sc/
ExpCPSKGE/src/code/01_Preprocessing.ipynb
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PARAMETER TYPE POTENTIAL VALUES
model embedding dimensions INT 32, 64, 128
model scoring function norm INT+ 1,2
loss function STR margin ranking
loss margin FLOAT+ 1.0,2.0
optimizer STR Adam, SGD
optimizer learning rate FLOAT+,<1 0.001, 0.01, 0.1
negative sampler STR basic, bernoulli
negative samples per positive INT+ 32
max number of epochs INT+ 100
early stopper BOOL True, False

Table 4.6: Parameter settings for hyper-parameter optimization(HPO) of KGE models

packages and their versions to run the experiments is provided as well as a detailed
explanation on how to run the full experiment.2

Each of the four KGE models was trained using the default values of the corresponding
implementation setup first. Then, each model was trained using hyperparameter
optimization(HPO) to find the best-performing hyper-parameter settings for each
model. In table 4.6, the tested parameters as well as potential values for each variable
are shown without making a claim to be exhaustive. While the models may perform
differently depending on the model-specific definition of the score function, the overall
framework was tested on the same parameters, such as lookup layer, loss functions,
generation of negative triples and optimizers. This way, the setup allows for enough
flexibility for a model to find the ideal settings for good performance, while ensuring
comparability and providing the same starting conditions for each model before training.

4.2.1 Workflow
In this section, the workflow pipeline of the experiment will be explained in detail. In
figure 4.4, a schematic representation of the workflow is presented. The whole workflow
can be split into four main tasks - preprocessing, model training, model evaluation and
link prediction.

1. Preprocessing The initial data provided for the training process is the ExpCPS
Knowledge Graph. Both villages are stored in a local GraphDB instance, where
they can be accessed through a user interface or python command. As described
in section 4.1.3, the Knowledge Graphs were preprocessed and stored in csv files
as triples and quadruples for further use.

2Full experiment is available at https://github.com/Kat-rin-sc/ExpCPSKGE/
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Figure 4.4: Workflow representation of the Experimental Setup

2. Model Training In the next step, all four Knowledge Graph Embedding models
chosen in section 3.1 were trained on the training and test data defined in section
4.1.3. Each model was trained with the default values of the implementation setup
as well as using a hyper-parameter optimization algorithm for finding the optimal
model embedding dimensions, loss margin and optimizer. Training the default
models and conducting a hyperparameter optimization takes approximately half
a day per model using CUDA. As a result, eight trained models are stored for
further evaluation (one default training run and one optimized run for each of
the four chosen models).

3. Model Evaluation Each model from the model-training section is then further
evaluated on multiple sections of the Village B data. Model performance is
tested on event data (checking whether the model knows which events are found
by the Knowledge Graph), inferred data (analysing the embedding quality of
potentialCause relations) and explanation data (checking the performance
on causedBy relations). The causedBy relations are the relations which were
not present in the training data at all. For reference, the mean performance
for any relations in the Village B KG was added. Using this setup of different
evaluation metrics for different sections of the Knowledge Graph aims to analyse
the model performance not only on general performance, or performance on the
target relations, but to find out where a model is performing particularly badly
or exceptionally well. This might help to find weaknesses of specific models as
well as finding out what characteristics are underrepresented in the embeddings.
The detailed model evaluation will be presented in chapter 5.

4. Link Prediction and Evaluation Following general model evaluation, each
of the models is used to predict potential causality links in the ExpCPS Knowl-
edge Graph. For each event, which contains a known effect event, the trained
KGE models are used to predict a potential tail for the triple (effectEvent,
causedBy, ?). Each model will score all existing entities in the Knowledge
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Graph based on their scoring function and the trained embedding space. Based
on this score, the entities are ranked according to their likelihood of being a
true cause. The ranked model predictions are then evaluated manually in a
human annotation process. In the next section a more detailed explanation will
be provided on how the evaluation of the predictions will be conducted.

4.3 Link Prediction Evaluation Setup
In a link prediction task, the goal is to find a set of potential links, which could
be true links, but which may not be part of the original Knowledge Graph. In the
ExpCPS use case, where the goal is to find cause events for a set of effect events, the
prediction task is focussed on tail prediction. In a tail prediction, the tail of a triple is
omitted and entities are scored on their potential to be a fitting tail for this triple. For
example, if potential causes of effectEventA should be predicted, a fitting tail is
searched for the triple (effectEventA, causedBy, ?). After feeding this triple
to a prediction model, it will provide a list of potential tails. Each potential tail is
an entity of the Knowledge Graph, which has a score based on the model’s scoring
function as well as a ranking, which shows the rank of the entity score compared to
other entities in the KG. For evaluation, the true label of each entity is required. For
evaluating the experiment, the top five ranked entities are chosen to be evaluated,
based on the ground truth data and manual evaluation. Therefore, a hits@5 evaluation
metric can be calculated and analysed in the results.

As all entities in the KG are compared in the link prediction task, some preprocessing
steps are conducted before evaluating the top five results per model. A few rules are
applied to the set of predictions to filter out irrelevant predictions from the set of
entities before looking at the results in more detail:

Defined rules for filtering prediction results:

1. Is the predicted tail of type event?
- No: drop entity

2. Is the predicted event happening in Village B?
- No: drop entity

3. Did the predicted event happen after the effect event?
- Yes: drop entity

Based on these rules, a lot of predictions can already be filtered out as they are
irrelevant entities and are therefore identified as false positives. As a result, only a set
of potentially relevant events in Village B is left to analyse. Based on the filtered set
of predictions, the top five predictions of each model are analysed in more detail. For
any predictions which are still potential candidates, the sensor connected to the event,
the physical location of the feature where the event occured, the reference observation
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Value Definition Example
4 definitely true ground truth, level 2 ground truth
3 probably true same sensor as ground truth, time intervals reasonable
2 probably false none of the above, but possibly true, potential causality

between sensors exists
1 definitely false same event as effect-event or no connection, no potential

causality

Table 4.7: Definition of the Evaluation Scale

as well as the timestamp of the event are analysed in more detail. Additionally, the
shortest physical distance to the effect event as well as the temporal distance are
calculated for each predicted cause event.

This process results in a set of 17 prediction files, one set of entities for each event for
which an explanation exists. Each file contains a set of predicted causes as well as the
ground truth causes for the event.

4.3.1 Human Annotation
Following the preprocessing of the evaluation (step 4.2. as shown in figure 4.4), these
prediction files are annotated manually in an annotation workshop by Knowledge
Engineers. The goal of the evaluation is to determine whether the predicted causes are
true causes or false positives. While some labels are very clear to find (when a ground
truth event is predicted, it is obviously true), for some labels the decision is not so
clear. To tackle this problem, a 4-point Likert scale is used to label the likelihood of
a prediction to be true. Thereby, a distinction can be drawn between events which
are definitely true and those, which are probably true. A verbal definition of the four
points on the evaluation scale as well as examples, which would be labelled by the
respective value, is depicted in table 4.7.

As can be seen in table 4.7, the four categories are chosen based on general rules. An
evaluation workshop with Knowledge Engineers was held to determine the labels of
all 416 causality predictions. A set of rules was developed to determine the category
of each prediction on the evaluation scale. For this evaluation, a very conservative
approach was used to allow for potential causalities, which are not present in the ground
truth. In further research, the effect of more liberal evaluations could be analysed. In
the following definitions, any entity connected to the effect event, such as the sensor of
the event or the event itself, will be marked by the appendix XE , while the appendix
XC will be used for entities connected to the predicted cause event. For each point on
the scale, a set of rules was defined to make sure each event is allocated to one of the
four potential likelihoods. Only one of the rules has to be fulfilled for an event to be
allocated to the respective score.
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4.3. Link Prediction Evaluation Setup

[1] definitely false

• SensorC does not have a potential causality connection to SensorE

• EventC is equal to EventE

[2] probably false

• potential causality between SensorC and SensorE exists, but SensorC does
not exist in the ground truth

• SensorC does exist in the ground truth, but the time difference between
EventC and EventE is > 1h

[3] probably true

• EventC does not exist in the ground truth, but SensorC exists in the ground
truth and time difference between EventC and EventE is <= 1h

[4] definitely true

• EventC is in ground truth
• EventC is a level 2 - ground truth (EventC is a true cause of an event,

which caused EventE)

Based on these allocation-rules, all causality predictions should be labelled successfully
and the evaluation of the prediction results can be finalized. Based on this evaluation,
evaluation metrics are calculated using these labels. As only the top five predictions
of each model are analysed, the evaluation is limited to the hits@5 metric. In the
evaluation, there will be a distinction between defHits@5, which only includes level-4
true values, and probHits@5, which includes level-4 and level-3 true values from the
Evaluation Scale as true positives.

Additionally, there will be a set of evaluation metrics called hits@5adj . This metric is
adjusting the defHits@5 metric based on the number of ground truth data available.
As there are some explanations, which contain less than five ground truth-causalities,
false positives will be ignored if all of the potential true causes have already been
predicted by a model.
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CHAPTER 5
Results

In this chapter, the results of the experiment as explained in chapter 4 will be shown.
The experiment results are split into three main sections. First, the results of the
model training phase will be discussed. For each of the trained models, the optimal
hyperparameters are discussed and development of the loss during model training will
be shown. In the second section, model performance will be compared based on general
representation capabilities of each model. For this section, the performance of the
models will be compared on different metrics and test sets to find the best-performing
model. In the final section, the models will be used to predict causality links between
events in the Knowledge Graph. Based on the evaluation setup in section 4.3, the
causality prediction of each model is evaluated on a four-point Likert scale. Based
on this evaluation, the performance of each of the four models on a causality link
prediction task is measured.

5.1 Model Training
Based on literature research on potential KGE models to represent the ExpCPS
Knowledge Graph in a low-dimensional embedding space, four models have been
chosen to be trained and evaluated (TransE, TransH, ComplEx, TTransE). Each model
was first trained using the default parameters of the KGE framework and then a
hyperparameter optimization was conducted. In table 5.1, some of the optimized
parameters are shown for each model. Interestingly, most parameters ended up being
very similar for the different models. Only the early stopping setting led to very
different numbers of training epochs for the various models.

In figure 5.1, the development of the training loss per epoch is shown for each model.
In the top row, the default training runs are shown, while the optimized runs are
shown in the lower section of the figure. Potentially, each model was trained up to 100
epochs, but due to early stopping, many training runs stopped earlier as there was no
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5.1. Model Training

Parameter TransE TransH ComplEx TTransE
dimensions 64 64 64 32
loss function margin ranking margin ranking softplus cross entropy loss
optimizer Adam Adam Adam Adam
learning rate 0.001 0.001 0.001 0.008011243
epochs 100 30 80 45
early stopping True True True True

Table 5.1: model settings after Hyperparameter Optimization

Figure 5.1: Training Loss per Epoch for all models, shown on a logarithmic scale

default HPO model
training model search training

TransE 0:41:42 14:37:25 1:45:30
TransH 0:26:47 12:46:47 0:33:31
ComplEx 2:28:30 14:54:24 1:01:37
TTransE 7:49:54 11D 21:30:15 17:29:37

Table 5.2: training times of models

significant improvement in training the models for several epochs. Only TransE never
stopped training early, even though the development of training loss suggests a very
low improvement for any epoch after epoch 50. Figure 5.1 shows the training loss on a
logarithmic scale, which may let small improvements seem to disappear in the graph.

Training the embedding models took between 30 minutes and eight hours, while
optimizing the hyperparameters took between 12 hours and 12 days. The detailed
comparison of training times can be examined in detail in table 5.2. Training of the
TTransE model took by far the longest to complete. The reason therefore might be the
additional computational effort needed due to the temporal parameter to be embedded
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5.2. General Performance Results

default optimized
data model hits@10 hits@3 MR hits@10 hits@3 MR
inferred TransE 0.740 0.545 37 0.539 0.429 53

TransH 0.591 0.513 240 0.610 0.571 114
ComplEx 0.227 0.123 2639 0.727 0.526 185
TTransE 0.965* 0.825* 3* 0.870* 0.760* 10*

explanation TransE 0.036 0.013* 233* 0.214* 0.040* 61*
TransH 0.112* 0 256 0.125 0.009 160
ComplEx 0.000 0.000 49069 0.004 0.000 34315
TTransE 0.031 0.008 14229 0.075 0.000 487

events TransE 0.887* 0.808* 79* 0.658 0.515 1076
TransH 0.742 0.639 296 0.673 0.547 591
ComplEx 0.530 0.445 5502 0.773 0.628 918
TTransE 0.880 0.801 559 0.809* 0.694* 21*

all TransE 0.872* 0.832* 1125* 0.728 0.655 1080*
TransH 0.781 0.734 1217 0.748 0.682 1237
ComplEx 0.778 0.701 1813 0.819* 0.777* 1322
TTransE 0.704 0.572 1776 0.777 0.735 1503

* best result in this category

Table 5.3: Performance Metrics of all trained models, measured in four categories

in the model. Another explanation might be the different embedding framework used
for TTransE. This framework seems to not have implemented some of the performance
enhancements, which are used in pykeen for the other models.

5.2 General Performance Results
In a first evaluation step, the ability of a model to represent various parts of the ExpCPS
Knowledge Graph is examined. Performance metrics are calculated individually for
the subgraphs of inferred data, events data and explanation data. Inferred data is
the subgraph containing potential causalities between sensors. Events data contains
all the events, which are connected to observations from the simulation data. The
explanation graph covers the set of causality relations between events. This graph
is not known by the embedding models during the training process at all. Further
analysis of prediction performance on explanation triples is thoroughly investigated
in the next section. Moreover, the overall performance when considering the whole
Knowledge graph is added to the evaluation. All of the evaluation results are based on
the Village B Knowledge Graph.

Table 5.3 shows an overview of all performance results for each model on each data type,
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5.2. General Performance Results

Figure 5.2: Model Performances of all trained models measured in Hits@10

comparing the default settings and the optimized settings. For each category and metric,
the best score is marked by a star. The table shows that different models are better
at representing different sections of the Knowledge Graph. TTransE performs best in
representing inferred data, which is interesting as inferred data is time-independent,
meaning that is should not benefit from temporal embeddings. Event data is best
represented by TransE when using default settings, but TTransE outperforms TransE
in the optimized settings. Explanation data is best represented by TransE, while overall
performance for the whole Knowledge Graph is best represented by ComplEx, when
considering hits@k metrics. Mean Rank performs best for TransE.

In figure 5.2, the performance differences between models are visualised for the hits@10
metric. The figure shows that hyperparameter optimization does not result in better
performance for models over all categories. For inferred data, model performance
actually decreased. But most importantly, prediction performance improved with
hyperparameter optimization for explanation triples, which are the main focus of
the thesis. Unsurprisingly, performance is worst on explanation data overall as this
section of the Knowledge Graph is not present in the training data and the triples
are completely new to the models. It seems like TTransE is overfitting on the data
categories, which are in the training set as TTransE performs extremely well on existing
data, such as inferred and events data, but it is the second worst model to represent
explanation data. Optimized TransE, on the other hand, is performing worst on the
known data categories but performs best on explanation data. Without jumping to any
conclusions, it seems like TransE does manage to understand general connections and
semantics in the ExpCPS Knowledge Graph better than other models as it manages to
apply its embeddings on new, unseen data with the best results.

Performance of models measured in Arithmetic Mean Rank (MR) is shown in figure 5.3
(low mean rank respresents better performance). MR shows a more general view of the
performance of a model, as it considers all ranked results in the evaluation compared
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5.2. General Performance Results

Figure 5.3: Model Performances of all trained models measured in Arithmetic Mean
Rank

to hits@k, where only the top k results are evaluated. As the Mean Rank can be any
number in the interval of [1, #EntitiesInKG], the y-axis in figure 5.3 is shown on a
log-scale. Therefore, comparison of height differences between bars in the figure has to
be done with care. While models seem to perform similarly in terms of Mean Rank
overall, there are big differences when investigating the three categories. ComplEx
performs worst on the categories inferred and explanation. Since ComplEx does not
perform much worse than others in the rest of the KG, it seems like ComplEx has
difficulties modelling causal relation in the data. TTransE performs exceptionally well
on inferred and events data, but it is drastically outperformed by TransE and TransH
on explanation data. Comparing the improvements from default hyperparameters to
optimized hyperparameters, it looks like ComplEx did not benefit from the optimization
at all. While mean rank was reduced for most categories when applying optimized
hyperparameters to ComplEx, mean ranks of explanation data improved by 30% and
remained at an unacceptably high level.

As TransE was already investigated in detail for hits@10, looking at MR seems to give
a more complete view on the performance of the model. While TransE did not manage
to rank as many true values in the top 10 predictions as the other models for most
categories, it performed best when considering all rankings of ground truth values.
Therefore, it also seems to be more consistent in its performance.

TransH has not been mentioned in the analysis of performance data much, as it is never
the top-performing model, but it also does not perform too badly. Overall, TransH
seems to be a solid, robust model, but is always slightly outperformed by another
model, especially TransE.
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5.3. Link Prediction Results

5.3 Link Prediction Results
In this section the model performances for causality prediction will be evaluated. There
are 17 events in the validation data which contain an explanation that is unknown to
the trained models. Each explanation contains between one and twelve events, which
are known to cause the event. These events are used as the ground truth when testing
model performances. Additionally, potential cause events not present in the ground
truth will be investigated on whether they are true causes, which are missing in the
current Knowledge Graph. There are 7 types of events, for which an explanation exists.

The causality relation is depicted in the Knowledge Graph as a triple of the form
(EffectEventA, causedBy, CauseEventX). In this triple, the entity CauseEventX
is unknown. Each of the four trained models in the experiment is tasked to find the
five best matches to fit the causedBy relation for an effect event. In the analysis
of general model performances, the models trained with optimized hyperparameter
settings all achieved better results on the explanation data than the default values.
Therefore, the hyperparameter-optimized models are used for causality link prediction.

For each model, the top 5 predictions are derived and evaluated as described in section
4.3. This means that predictions are filtered according to the filtering rules in section
4.3 and the top five results remaining are further evaluated. Each prediction is labelled
according to its likelihood to be true on a scale between 1 and 4. As a result, each
of the 17 events will have a set of top 5 predictions per model and each prediction is
labelled on a four-point Likert scale. Based on these labels, there are three evaluation
metrics to be calculated and analysed: defHits@5 (number of predictions, which are
labelled to be definitely true), adjusted defHits@5 (defHits@5, adjusted by the number
of possible truth values in the data) and probHits@5 (number of predictions, which are
labelled probably or definitely true).

The results of the evaluation are shown in table 5.4. In figure 5.4, the comparison
between definite and probable hits@5 is visualised overall and per event type. Over-
all, the TransE model performed best on link prediction for definite and probable
hits@5. TransH and ComplEx benefitted the most from including probable hits in the
performance metric as their result improved by 0.09 from definite to probable hits@5.

The event types FlexRequestRejected and FlexUnavailableState did not occur at all in
the training data of the models. Therefore, there was no explanation of these event
types known to the trained KGE models. As expected, all models perform very poorly
when trying to find and explanation for FlexUnavailableState events. None of the
models found any event, which was contained in the ground truth data. Only TransE
and TransH came close by finding some events which are probably true. Conversely,
predictions on FlexRequestRejected events are extremely good. TransE and TransH
performed best on this type of event. As there was no FlexRequestRejected event
present in Village A at all, it is impressive that performance on this event type is among
the best when comparing to other event types. As this type of causality was definitely
not learned by the models explicitly, it seems like the models could pick up on the
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5.3. Link Prediction Results

event type model defHits@5
defHits@5
(adjusted) probHits@5

FlexRequest
Approved

TransE 0.17* 0.17* 0.23*
TransH 0.07 0.07 0.17
ComplEx 0.10 0.10 0.23
TTransE 0.03 0.03 0.03

FlexRequest
Rejected**

TransE 0.50* 0.50* 0.70*
TransH 0.50* 0.50* 0.70*
ComplEx 0.10 0.10 0.10
TTransE 0.30 0.30 0.40

Flex
Unavailable

State**

TransE 0.00 0.00 0.07
TransH 0.00 0.00 0.13*
ComplEx 0.00 0.00 0.00
TTransE 0.00 0.00 0.00

Lowering
Demand

TransE 0.20 0.20 0.20
TransH 0.40* 0.40* 0.40*
ComplEx 0.00 0.00 0.40*
TTransE 0.40* 0.40* 0.40*

Normalizing

TransE 0.60* 0.60* 0.60*
TransH 0.40 0.40 0.60*
ComplEx 0.20 0.20 0.20
TTransE 0.20 0.20 0.20

Overloading

TransE 0.40* 0.40* 0.40*
TransH 0.40* 0.40* 0.40*
ComplEx 0.00 0.00 0.10
TTransE 0.10 0.10 0.10

Peaking
Demand

TransE 0.20* 0.20* 0.20*
TransH 0.20* 0.20* 0.20*
ComplEx 0.00 0.00 0.00
TTransE 0.20* 0.20* 0.20*

Overall

TransE 0.24* 0.24* 0.30*
TransH 0.20 0.20 0.29
ComplEx 0.06 0.06 0.15
TTransE 0.11 0.18 0.13

* best result in this category
** event type is not present in the training data

Table 5.4: Link Prediction Performance over all event types and models
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5.3. Link Prediction Results

Figure 5.4: Link Prediction Performance of all four models overall and per event type

semantic implications of causality well enough to be able to predict causal events of
an event which was unseen before. However, this conclusion cannot be drawn without
hesitation as applying the models for predicting FlexUnavailableState did not work
as well. On the other hand, causal explanations of FlexUnavailableState may be very
hard to capture as this event only shows that the state of the building is not available.
This could either be a coincidence or it could be caused by a lack of communication.

While probable hits@5 increase model performances for some types of events, general
performance rankings between the four models hardly ever change between definite
and probable hits@5. Only for LoweringDemand events, ComplEx does not predict
any causal events from the ground truth, while it outperforms TransE when including
events which are probably true.

In table 5.4, the best-performing models are marked per event type by printing the
model names in bold font. Even though TransE does not perform best over all types of
models, it still is one of the best performing models for most event types. The biggest
achievement of TransE is that it always managed to predict at least a probable cause
for each event type. When looking at the individual events, it achieves probHits@5>0
for each of the 17 explanations except for two out of four UnavailableState events.

There was no significance test conducted on the statistical significance of the results as
the data set is too small to achieve further insights. For the majority of event types, less
than three explanations were tested. Checking for statistically significant performance
differences would require a longer time period to be tested, where more events can be
explained and evaluated. This is subject to future work.
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5.3. Link Prediction Results

TransE TransH ComplEx TTransE
timestamp

defHits@5 -0.79 -0.73 -0.29 -0.76
probHits@5 -0.85 -0.72 -0.49 -0.79

Table 5.5: Pearson Correlation Coefficient between timestamp and performance

Figure 5.5: Prediction performance over time

5.3.1 Timeseries Analysis
In an attempt to analyse prediction results in more detail, model performance over
time is depicted in figure 5.5. On the left side, definite hits@5 are shown, while probable
hits@5 can be observed on the right figure. Obviously, probable hits@5 generally
performs better than definite hits@5. However, the same trend is visible for all models
for both performance metrics. Models perform worse on effect events occuring later
in the time interval. It seems like finding the right causal event gets more difficult
over time. While visual plots over time give a good idea of general trends in the data,
it is not enough to jump to conclusions yet. Therefore, Pearson correlation statistics
are displayed in table 5.5. For each model, correlation between the timestamp of an
event and its performance (defHits@5, probHits@5 ) is calculated. The magnitude
of correlation varies between models, but with no exception all of the performances
correlate negatively with time.

While there could also be other explanations of this behavior, the experimental setup
may be responsible for this temporal correlation. As only previous events from Village
B are considered for link prediction, the set of potential events which can cause an
event grows over time as there are more events which happened in the past the longer
a simulation has already been running. This makes it harder for models to predict the
right causal events at a later point in time.

Additionally, the correlation between time and performance may suggest that perfor-
mance differences between event types are not only due to different abilities of a model
to understand types of events and their causal relations, but due to different events
occuring at different timestamps. To analyse this theory in more detail, figure 5.6 shows
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5.3. Link Prediction Results

Figure 5.6: Prediction performance of TransE on different event types over time

the distribution of all seven event types on the time interval of 24h as orange bars. An
orange bar always has a height of one as one type of effect event only occurs maximum
once per timestamp. One can see that FlexRequestApproved, FlexRequestRejected,
FlexUnavailableState and Overloading events occur across a larger time interval. For
all other event types only a single event happens over the whole time frame, so no
analysis of time development can be conducted. The blue bars in figure 5.6 show the
prediction performance of TransE for each event at the respective timestamp. While
there is a big difference between prediction performances over time at Overloading
events, there is no clear correlation over time for any of the other events. While a
different data set size of potential causal events over time may have an influence, there
may be a correlation over time merely due to different types of events (which have
different model performances generally) happening at different timestamps.

5.3.2 Ground Truth Analysis
In a next step, the effect of the number of ground truth data available in an explanation
will be investigated in detail as this may also have an influence on the performance of a
prediction model. For example, if only two ground truth events exist in the validation
data, only a maximum of two events can be predicted correctly according to the ground
truth, while up to five events can be predicted correctly if five or more ground truth
events are available in the test data. While the metric hits@5 (adjusted) should account
for this fact, table 5.4 shows that there is no difference between the hits@5 metric
and hits@5 (adjusted). Since the adjusted metric only has an effect if all ground truth
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5.3. Link Prediction Results

Figure 5.7: Number of Ground Truth events for each type of effect event

events are already predicted, even for events with only a small amount of ground truth
data, not all ground truth values were predicted. If only one event is missing, the
metric is the same as the unadjusted one. This shows that the adjusted hits@5 metric
does not properly take into account the different amount of ground truth values for
the evaluation of different events.

As the number of ground truth events for an explanation may still influence the metrics,
a comparison of ground truth events in an explanation of different event types is shown
in figure 5.7. The low number of events in the ground truth for Normalizing and
Overloading events is misleading as these two types of events profit from additional
level2 ground truth events, which can potentially be predicted by a model and will
be counted as definite hits in the hits@5 metric. The transparent bar for these two
events shows the number of level 2-ground truth events for these two event types. For
the remaining types of events, all event types contain more than five ground truth
values, except for the FlexRequestRejected event type. As already mentioned before,
the FlexRequestRejected event is one of the best-performing event types in the data,
which shows that there is no influence of the number of ground truth values on the
performance of event types visible in the data.

5.3.3 Level 2 Prediction Analysis
One of the most interesting achievements of using Knowledge Graph Embedding
models for causality link prediction was the fact that these models were able to predict
ground-truth data which was never directly connected to the events to be explained.
This behavior shows that the models managed to represent the type of connection of a
causality relation and could apply these semantics to the data. There are three events,
which contain level 2 ground-truth in the data. In figure 5.8, these three events and
their causality network is visualised. The dark green nodes of the graphs represent
the event for which an explanation exists. The grey nodes represent the events, which
existed in the ground truth as causes of the event. If an event was correctly predicted by
an embedding model, a circle of the corresponding color is drawn around the predicted
node.
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5.3. Link Prediction Results

OverloadingEvent, depicted in figure 5.8(a) shows the most interesting predictions, as
none of the models could predict the immediate cause event, but three of the indirect
causes of the OverloadingEvent were predicted by TransE and TransH. This means
that 75% of the indirect causes were predicted correctly, while no direct cause could
be predicted by these two models. As the other two events have a bigger causality
network, the percentage of predicted events decreases (Only the top five predictions per
model are considered). Interestingly, only TTransE managed to predict a direct cause
of the NormalizingEvent in figure 5.8(b). For all other events and models, prediction
of direct causes was extremely low.

ComplEx does not seem to be a good model to predict any causal events which are not
immediate. Over all three models, only a single level2 cause was correctly predicted by
the model. Generally, the good performance of TransE and TransH can be seen in this
visualisation as well, as is already visible in other performance graphs, such as figure
5.4. Additionally, worse performance for later events in the simulation is also visible in
this graph. OverloadEvent 12 (depicted in 5.8(c)), which occured at 18:00 contains a
lot less correctly predicted causal events than the other two events, which happened at
04:00 (Overload2)(Normalizing3) and 05:00.
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5.3. Link Prediction Results

(a) Explanation of Overload Event 2

(b) Explanation of Normalizing Event 3

(c) Explanation of Overload Event 12
Figure 5.8: Visualization of level2 predictions for three events. Colored circles show the
predicitons of the respective models ( TransE, TransH, ComplEx, TTransE)
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CHAPTER 6
Summary

In this final chapter, the main findings of the research project will be summarised. In
section 6.1, the research questions will be revisited and the contribution of the thesis
to answer these questions is analysed. In section 6.2, the findings will be discussed and
drawbacks of the results and the experiment are considered. In the final section of
this chapter, the contributions of this master thesis to the research community will be
explained and evaluated.
In conclusion, the performance results show that TransE generally performs best on a
causality link prediction task in the ExpCPS Knowledge Graph. Some general analysis
on peroformance differences on different event types and timeframes was conducted,
but additional analyses on reasons for perfomance differences between models is subject
to further research. Additionally, the small size of test data in this experiment does
not allow for valid statistical analysis of the results.

6.1 Conclusion
In this thesis, the application of Knowledge Graph Embedding Methods for causality
link prediction was tested. Four KGE models were trained on a simulated Smart
Energy Grid to test their ability to understand the semantics of a Cyber-Physical
System and to use this knowledge to find causalities between events happening during
the simulation. At the start of the thesis, three research questions were posed, which I
tried to answer in the course of the thesis.

Q1 Which Knowledge Graph Embedding Methods are most suitable for
causality detection in a Cyber Physical System?

A thorough literature research was conducted to find different KGE methods and to
understand their strengths and weaknesses. While a lot of research on meta-analyses
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6.1. Conclusion

and studies to compare the most common KGE methods was conducted, these papers
usually focussed on model performances on benchmark datasets, such as DBpedia.
These benchmark datasets are very helpful for general comparison of performances, but
these Knowledge Graphs contain very different information compared to a Knowledge
Grpah which is used to model a Cyber-Physical System. For now, no research on the
specific case of causality prediction in a cyber-physical system using KGEs was found.
Therefore, the ability of different KGE models on this task is not clear yet.

To determine suitable embedding methods for causality detection in the ExpCPS
Knowledge Graph, the ability of modelling different types of relations (Symmetry,
Antisymmetry, Inversion, Composition, 1-N Relations) was investigated for a set of
commonly used KGE methods. This analysis showed that there is no single embedding
method, which is able to intrinsically cover all types of relations relevant in the ExpCPS
Knowledge Graph. As mere analysis of the theoretical capabilities of the embedding
methods did not yield a satisfying result, a set of four embedding models was chosen
to be trained on the ExpCPS Knowledge Graph for further evaluation.

Out of a set of eight embeddings methods, which have been researched in detail, TransE
is the only model which is capable of explicitly representing composite relations in
the embedding. However, it is not able to model symmetry. As a development of
TransE, TransH manages to model symmetry at the cost of composition. ComplEx
has the same capabilities of TransH, but it follows a very different approach as it is
based on semantic matching. ComplEx was included in the analysis as this model
is recommended in various papers to be used for any type of first KGE analysis of a
Knowledge Graph as it generally yields very good results. As a new development of
KGE models, temporal KGEs use time as an additional variable to correctly embed
Knowledge Graphs. As the ExpCPS KG does evolve over time and time is an important
factor for event analysis, TTransE was included in the analysis to check if this type of
embedding improves prediction performance.

In conclusion, Research Question 1 could not be fully answered in this thesis, but
the exploration of KGE models for the task of causality link prediction was started
by applying a set of promising KGE models, which can model relation types that are
important for ExpCPS and which show promising results in benchmark analyses.

Q2 How well do the chosen Knowledge Graph Embedding Methods from Q1
perform in representing the knowledge base captured by the ExpCPS
Knowledge Graph?

The four embedding methods were trained on ExpCPS data and evaluated on different
subgraphs of the Knowledge Graph (explanation, events, inferred graph). Generally,
there was a big difference in terms of performance between the subgraphs. Overall,
performance was between 0.7 and 0.8 hits@10 for any of the four embedding models.
ComplEx performed best overall in terms of hits@10, while TransE outperformed the

68



6.2. Discussion

other models on Mean Rank. Moreover, performance differences were small when
comparing performance on the whole Knowledge Graph, but bigger differences occured
when looking at subgraphs of the data. Overall, ComplEx performed best on time-
invariant data, such as topology of the network and potential causes between sensors.
TransE and TransH did not perform very well on general data, but outperformed
the other models on explanation data. Generally, all of the four models managed to
perform decently on representing the ExpCPS knowledge base. However, there is still
room for improvement. No single embedding model outperformed the others over all
categories, but different types of data could be predicted better by different models.

Q3 How well can the embedding space be used to uncover causality relations
in a system?

For the last research question, the model performances on the task of link prediction
in the explanation subgraph was tested. TransE performed best on this task, achieving
0.24 on the hits@5 metric on ground truth data. TransH was not far behind, while
TTransE and ComplEx both achieved less than half of the peroformance of TransE.
These performance results are not perticularly high and these models are not ready to
be deployed for any real-world usage yet. However, the tested KGE models managed to
understand the semantics of the KG and derived unknown causality from the trained
data. Additionally, TransE and TransH predicted indirect causal relations (causes of a
cause), which were not present in the ground truth data.

Similarly to research question 2, performances vary a lot between event types. TransE
achieved a hits@5 metric of 0.6 for Normalizing events, while no model could predict
any correct causes for FlexUnavailableState events.

Additionally, a set of events could be predicted that did not occur in the ground truth,
but an expert evaluation showed that they might be true causes missing from the
current data set. These events should be investigated further as they could be used to
complete the knowledge graph by adding these missing links.

6.2 Discussion
In conclusion, this master thesis showed that there is potential in the application of
Knowledge Graph Emeddings for causality link prediction in Cyber-Physical Energy
Systems. However, there are still a lot of potential improvements and further research
to be conducted on this topic. Firstly, the analysis of causality link prediction was only
conducted on simulated data from the BIFROST application, while the applicability
on other energy systems, real world data or other cyber-physical systems is still to be
explored. Additionally, the data was currently measured in 1h timesteps, while events
occuring between two timestamps are not registered by the system. Working towards
continuous time data for causality prediction could uncover interesting relations that
may be missed in the current setting.
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On another perspective, the improvement of prediction performance by knowledge
graph embeddings could also be an interesting issue to work on. In this thesis, I tried
to test a set of embedding models which seemed fitting to the use case. However, I
was constrained by the number of models to be tested as well as the complexity of
the models as I was restricted by limited computational resources. In future research,
more advanced and complex embedding models might yield better results. Moreover,
other machine learning approaches, such as Graph Neural Networks could even be
better suited to predict causality in this setting. There are many topics which could
potentially still be explored in this area.

6.3 Contributions of the Work
In this thesis, I introduced a new framework to test the ability of a model to find
causality relations in a (simulated) energy village based on knowledge derived from
another village. As the setup of a village is complete in its definition and causality
relations to be trained are rare, a new training architecture was introduced to be able
to test the performance of a machine learning model on causality prediction in an
energy village.

Based on this setup, the application of Knowledge Graph Embeddings for the task
of causality link prediction in a Cyber-Physical Energy System was explored. This
thesis evaluated the potential of using machine learning approaches on this use case
and could show that the right models can find not only ground truth data, but also
indirect causalities as well as possible causality links which are missing in the existing
data. Therefore, applying machine learning approaches could help in verifying existing
causality links as well as finding new links which may have been missed by existing
approaches, such as rule-based causality prediction.

Concerning the performances of different Knowledge Graph Embeddings, this work
showed that TransE seems to be the most capable embedding model to predict causality
links in the system. Even though it has one of the most simple scoring functions, it
is one of few models which can inherently represent transitive relations. As causality
is usually represented in causality paths, this ability is very helpful in finding causal
relation.

In conclusion, this thesis started the exploration of hybrid AI, leveraging the abilities
of symbolic and sub-symbolic AI in the use case of causality prediction in a Cyber-
Physical Energy System. Some initial performance evaluation of KGE models showed
the potential of this approach to yield new insights into a system that is not inherently
explainable.
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